matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikZusammengesetzt Poisson
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Zusammengesetzt Poisson
Zusammengesetzt Poisson < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammengesetzt Poisson: Idee, Tipp
Status: (Frage) beantwortet Status 
Datum: 14:24 Mi 03.11.2010
Autor: shaevy

Aufgabe
Sei S zusammengesetzt Poisson-verteilt mit λ=1.5 und diskreten Einzelschadenshöhen 1 und 2 mit Wahrscheinlichkeiten 2/3 bzw. 1/3. Berechne P(S = 0) und [mm] E(I_x) [/mm] für x=0,1,...,6. (Notation siehe Bsp.15)!

Bsp15: Sei [mm] I_M [/mm] die Geldmenge, die ein Rückversicherer dem Versicherer bei einer Stop-Loss-Rückversicherung mit Selbstbehalt M Zahlen muss. Für den Fall, dass der Gesamtschaden S durch eine Gammaverteilung mit Verteilungsfunktion

[mm] Gamma(x;\alpha,\beta)=\integral_{0}^{x}{\bruch{\beta^\alpha}{Gamma(\alpha)}t^{\alpha-1}e^{-\beta*t} dt} [/mm]

approximiert wird, zeige man
[mm] E(I_M)=\bruch{\alpha}{\beta}*(1-Gamma(M;\alpha+1,\beta))-M*(1-Gamma(M;\alpha,\beta)) [/mm]

Ich kann mit der Frage wenig anfangen und bitte um Hilfe.

Wäre über jeden Tipp, Idee oder Lösungsansatz sehr erfreut.

Mich interessiert nur die Lösung vom oberen Beispiel nicht von Bsp15.

lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zusammengesetzt Poisson: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Fr 05.11.2010
Autor: shaevy

Mittlerweile bin ich der Lösung schon etwas näher:
Es gibt:
[mm] P(N=n)=\bruch{\lambda^n}{n!}*e^-\lambda [/mm]

[mm] S=\summe_{i=1}^{N}Y_i [/mm]
Daher:
[mm] P(S=0)=\bruch{1.5^0}{0!}*e^-1,5=0,22313 [/mm]
[mm] P(S=1)=\bruch{1.5^1}{1!}*e^-1,5*2/3=0,22313 [/mm]
[mm] P(S=2)=\bruch{1.5^2}{2!}*e^-1,5*[1/3+(2/3)^2]=0,11842 [/mm]
[mm] P(S=3)=\bruch{1.5^3}{3!}*e^-1,5*[(2/3)*(1/3)+(2/3)^2]=0,05578 [/mm]
[mm] P(S=4)=\bruch{1.5^4}{4!}*e^-1,5*[(1/3)*(2/3)^2+(2/3)^4+(1/3)^2]=0,02149 [/mm]
[mm] P(S=5)=\bruch{1.5^5}{5!}*e^-1,5*[(1/3)*(2/3)^3+(2/3)^5+(2/3)*(1/3)^2]=0,004299 [/mm]
[mm] P(S=6)=\bruch{1.5^6}{6!}*e^-1,5*[(1/3)*(2/3)^4+(2/3)^6+(2/3)^2*(1/3)^2+(1/3)^3]=... [/mm]

Ich bin mir da jedoch recht unsicher..

Bezug
        
Bezug
Zusammengesetzt Poisson: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Sa 06.11.2010
Autor: vivo

Hallo,

es gilt doch ganz allgemein:

[mm]\mathbf{P}[S_t \in B]=\sum_{n=0}^{\infty}\mathbf{P}[N_t=n] \mathbf{P}[\sum_{i=0}^{n}X_i \in B][/mm]

für deine Verteilung ergibt sich dann:

[mm]\mathbf{P}[S=0]=\mathbf{P}[N=0]=\bruch{1.5^0}{0!}\cdot{}e^-1,5[/mm]

[mm]\mathbf{P}[S=1]=\mathbf{P}[N=1]\mathbf{P}[X_1=1]=\bruch{1.5^1}{1!}\cdot{}e^-1,5\cdot \frac{2}{3}[/mm]

[mm]\mathbf{P}[S=2]=\mathbf{P}[N=1]\mathbf{P}[X_1=2]+\mathbf{P}[N=2]\mathbf{P}[X_1=1]\mathbf{P}[X_1=2]=\bruch{1.5^1}{1!}\cdot{}e^-1,5\cdot \frac{1}{3}+\bruch{1.5^2}{2!}\cdot{}e^-1,5\cdot (\frac{2}{3})^2[/mm]

usw.

gruß

Bezug
        
Bezug
Zusammengesetzt Poisson: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 06.11.2010
Autor: vivo

Hallo,

jetzt brauchen wir noch [mm]\mathbf{E}[I_x][/mm]

[mm]I_x=max((S-x),0)[/mm]

[mm]\mathbf{E}[I_x]=\mathbf{E}[max((S-x),0)]= \int_{\Omega} (S-x)1_{[S(\omega)-x>0]}d\mathbf{P}[/mm]

für deinen Fall vereinfacht sich dass zu:

[mm]\sum_{i=1}^{\infty} ((x+i)-x)\mathbf{P}[S=x+i]= \sum_{i=x+1}^{\infty}i\mathbf{P}[S=i]-x(1-\mathbf{P}[S\leq x])= \mathbf{E}[S]-\sum_{i=0}^{x}i\mathbf{P}[S=i]-x(1-\mathbf{P}[S\leq x])=\mathbf{E}[N]\mathbf{E}[X_1]-\sum_{i=0}^{x}i\mathbf{P}[S=i]-x(1-\mathbf{P}[S\leq x])= (1,5)(\frac{2}{3}+\frac{2}{3})-\sum_{i=0}^{x}i\mathbf{P}[S=i]-x(1-\mathbf{P}[S\leq x])[/mm]

gruß

Bezug
                
Bezug
Zusammengesetzt Poisson: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Sa 06.11.2010
Autor: shaevy

Vielen Dank für deine Antwort. Der erste Teil ist mir jetzt völlig klar.

Beim zweiten Teil bin ich noch am überlegen.

Mir ist nicht ganz klar wie du vom Integral auf die Summe kommst..

lg

Bezug
                        
Bezug
Zusammengesetzt Poisson: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Sa 06.11.2010
Autor: vivo

Hallo,

naja, deine Zufallsvariable ist diskret und der Erwartungswert im diskreten ist eine Summe.

gruß

Bezug
        
Bezug
Zusammengesetzt Poisson: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Sa 06.11.2010
Autor: shaevy

Alles klar.. vielen Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]