matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraZum Tensorprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Zum Tensorprodukt
Zum Tensorprodukt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zum Tensorprodukt: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:49 Sa 22.04.2006
Autor: t.sbial

Hallo allerseits, es geht eigentlich um ein Seminar über lineare Darstellungen aufgebaut an dem Buch von J.-P. Serre: Linear Representations of Finite Groups und da muss ich nun Das Tensorprodukt machen. Und ich hab nun folgendes Problem: Sei V ein K-Vektorraum (endlich dimensional) und sei  [mm] \delta [/mm] ein Automorphismus von V [mm] \otimes [/mm] V für den gilt  [mm] \delta(x \otimes [/mm] y)=y [mm] \otimes [/mm] x  [mm] \forall [/mm]  x,y in V dann ist
                  V [mm] \otimes [/mm] V=Alt²(V) [mm] \oplus [/mm] Sym²(V)
Wobei Sym²(V) die Menge aller symmetrischen 2-Formen ist. Nun dann steht da noch dass falls [mm] (e_{i}:i=1..n) [/mm] eine Basis von V ist dann ist [mm] (e_{i}\otimes e_{j}+e_{j}\otimes e_{i})_{i \le j} [/mm] eine Basis von Sym²(V) und
[mm] (e_{i}\otimes e_{j}-e_{j}\otimes e_{i})_{i < j} [/mm] eine von Alt²(V) ist. Nun warum das alles so steht da leider nicht. Und das ist mein Problem! Meine Frage ist nun ob der Beweis von dem oben stehenden etwas längeres ist oder nicht? denn die meisten Teilnehmer an dem Seminar sind erst im 2. Semester.
Gruß T.Sbial

        
Bezug
Zum Tensorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Sa 22.04.2006
Autor: Gnometech

Grüße!

Nun ja, wenn man 2-Formen bzgl. der gegebenen Basis als Matrizen aufschreibt, dann steht da ja einfach nur, dass jede $n [mm] \times [/mm] n$ Matrix eindeutig geschrieben werden kann als Summe einer symmetrischen und einer schiefsymmetrischen Matrix - was nach einem kleinen Argument auch einem Studenten im 2. Semester einleuchten kann. :-)

Im Grunde benötigst Du die Notation und Theorie des Tensorproduktes ja nicht - übersetze einfach alles in die Sprache der Bilinearformen, dann sollte es auch gut zu verstehen sein. :-)

Lars

Bezug
                
Bezug
Zum Tensorprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:46 Mi 26.04.2006
Autor: t.sbial

Erstmal vielen Dank für die Anwort aber,zu

> Nun ja, wenn man 2-Formen bzgl. der gegebenen Basis als
> Matrizen aufschreibt, dann steht da ja einfach nur, dass
> jede [mm]n \times n[/mm] Matrix eindeutig geschrieben werden kann
> als Summe einer symmetrischen und einer schiefsymmetrischen
> Matrix - was nach einem kleinen Argument auch einem
> Studenten im 2. Semester einleuchten kann. :-)

  
Das Argument ist auch klar aber dann bräuchte ich sowas wie [mm] V\otimes V\cong M_{n\times n}(K) [/mm] und das wäre dann das eigentliche Problem! Ich weiß u.a, dass [mm] (Mult²(V))^{\*}\cong V\otimes\\V [/mm] und wegen [mm] Mult²(V)\cong M_{n\times n}(K) [/mm] kann ich ja folgern [mm] (M_{n\times n}(K))^{\*}\cong V\otimes\\V. [/mm] und wegen [mm] W^{\*}\cong\\W [/mm] für beliebige Vektorräume gilt dann [mm] V\otimes V\cong M_{n\times n}(K). [/mm] Kann ich das so machen? Falls nicht wie dann? Und dann bleibt immer noch das Problem mit den Basen, wie kommt man auf diese?
Gruß
T.Sbial

Bezug
                        
Bezug
Zum Tensorprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 28.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]