matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Zufallsvektoren
Zufallsvektoren < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvektoren: Zufallsvektor erstellen
Status: (Frage) beantwortet Status 
Datum: 16:23 Mi 10.06.2009
Autor: FVato

Hallo zusammen,

ich möchte aus einer gegebenen nxn-Kovarianzmatrix X und einem gegebenem nx1-Erwartungswert y Zufallszahlen erstellen die Normalverteilt zu (y,X) erstellen.

Kann mir jemand sagen wie ich das anstellen kann?

Danke im Vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zufallsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mi 10.06.2009
Autor: luis52

Moin  FVato,

[willkommenmr]

ich schreibe mal fuer die [mm] $n\times [/mm] n$ Kovarianzmatrix [mm] $\mathbf{\Sigma}$ [/mm] und fuer den Erwartungswertvektor [mm] $\mathbf{\mu}\in\IR^n$. [/mm]

Es gibt eine obere Dreiecksmatrix [mm] $\mathbf{T}$, [/mm] so dass gilt [mm] $\mathbf{\Sigma}=\mathbf{T}'\mathbf{T}$ [/mm] (Choleski-Zerlegung). Ist [mm] $\mathbf{z}=(Z_1,\dots,Z_n)'$ [/mm] ein Vektor unabhaengiger und standardnormalverteilter Zufallsvariablen, so besitzt [mm] $\mathbf{\mu}+\mathbf{T}'\mathbf{z}$ [/mm] eine multivariate Normalverteilung mit Erwartungswertvektor [mm] $\mathbf{\mu}$ [/mm] und Kovarianzmatrix [mm] $\mathbf{\Sigma}$. [/mm]


vg Luis


Bezug
                
Bezug
Zufallsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Mi 10.06.2009
Autor: FVato

Hallo,

erstmal danke für die schnelle Antwort.

Gibt es denn ein Programm (Excel,Matlab,eViews) mit dem ich das zu gegebenen Daten ausrechnen lassen kann?

Gruß, FVato

Bezug
                        
Bezug
Zufallsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Mi 10.06.2009
Autor: luis52


> Gibt es denn ein Programm (Excel,Matlab,eViews) mit dem ich
> das zu gegebenen Daten ausrechnen lassen kann?

>

Mit den ersten beiden kenne ich mich nicht aus, ein kurzer Blick
in die eViews-Handbuecher zeigt, dass das *vielleicht* geht.

In R ist das kein Problem.

vg Luis

Bezug
                                
Bezug
Zufallsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 10.06.2009
Autor: FVato

Wie würdest du das denn machen?
Welches Programm kann das denn?

Gruß, FVato

Bezug
                                        
Bezug
Zufallsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 10.06.2009
Autor: luis52

Kannst du denn R? Dann gib mal ein:

1:
2: simmn <- function(n,mu,Sigma){
3: T <- chol(Sigma)
4: p <- length(mu)
5: zz <- t(T)%*%matrix(rnorm(p*n),p,n)
6: zz <- zz+matrix(mu,p,n)
7: zz <- t(zz)
8: zz}
9: Sigma <- matrix(c(1,1,1,1,3,2,1,2,2),3,3)
10: mu <- c(2,-3,1)
11: simmn(10,mu,Sigma)


vg Luis

Bezug
                                                
Bezug
Zufallsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Mi 10.06.2009
Autor: FVato

   [,1]       [,2]        [,3]
[1,] 1.6398502 -3.4997156  1.57742443
[2,] 2.7680095  1.9423718  2.87303008
[3,] 0.8164325 -3.0128099  1.33350144
[4,] 1.8242670 -2.1773429  1.21779487
[5,] 0.6113955 -1.3308036  1.47202848
[6,] 0.4507870 -3.3212550 -0.44292239
[7,] 2.2458599 -3.5364111  1.30074393
[8,] 2.5608468 -2.4125153  1.75112609
[9,] 3.5202244  0.2045499  4.05575244
[10,] 2.0102536 -3.0023635 -0.06944482

Also das ist eine Funktion, die mir 10 zufallsvariablen liefert mit Erwartungswert [mm] \vektor{2 \\ -3 \\ 1} [/mm] und Kovarianzmatrix
[mm] \pmat{ 1 & 1 &1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 }? [/mm]
Super! Dank Dir!

Bezug
                                                        
Bezug
Zufallsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 10.06.2009
Autor: luis52


>    [,1]       [,2]        [,3]
>   [1,] 1.6398502 -3.4997156  1.57742443
>   [2,] 2.7680095  1.9423718  2.87303008
>   [3,] 0.8164325 -3.0128099  1.33350144
>   [4,] 1.8242670 -2.1773429  1.21779487
>   [5,] 0.6113955 -1.3308036  1.47202848
>   [6,] 0.4507870 -3.3212550 -0.44292239
>   [7,] 2.2458599 -3.5364111  1.30074393
>   [8,] 2.5608468 -2.4125153  1.75112609
>   [9,] 3.5202244  0.2045499  4.05575244
>  [10,] 2.0102536 -3.0023635 -0.06944482
>  
> Also das ist eine Funktion, die mir 10 zufallsvariablen
> liefert mit Erwartungswert [mm]\vektor{2 \\ -3 \\ 1}[/mm] und
> Kovarianzmatrix
> [mm]\pmat{ 1 & 1 &1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 }?[/mm]

So ist es.

>  Super! Dank
> Dir!

Gerne.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]