matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvariable finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Zufallsvariable finden
Zufallsvariable finden < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable finden: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:45 So 01.06.2008
Autor: Gero

Aufgabe
Es sei Omega=[0,1], F die Borel-Sigma-Algbra auf Omega und P das Lebesgue-Maß. Finden Sie eine Zufallsvariable, die folgende Verteilungsfunktion hat:
[mm] F_X (t)=\begin{cases} 0, & \mbox{für } t <1 \\ 1-t^2, & \mbox{für } t \ge 1 \end{cases} [/mm]

Hallo an alle,
bei dieser Aufgabe hab ich grad Null Ahnung, wie das funktionieren soll. Eigentlich isses wahrscheinlich nur ne Berechnung, aber da steh ich wahrscheinlich auf dem Schlauch. Kann mir vielleicht jemand hier weiterhelfen? Das wäre sehr nett!
Danke schonmal im voraus!

Grüßle
Gero

        
Bezug
Zufallsvariable finden: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Mo 02.06.2008
Autor: koepper

Hallo Gero,

die erstrebte Verteilungsfunktion F sinkt ja ab 1 und wird sogar negativ. Das ist nicht möglich.
Bitte prüfe noch einmal deine Aufgabenstellung.

LG
Will

Bezug
                
Bezug
Zufallsvariable finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:49 Mo 02.06.2008
Autor: Gero

Oh, stimmt. Das ist ein Tippfehler. Es gilt:
[mm] F_X (t)=\begin{cases} 0, & \mbox{für } t<1 \\ 1-t^{-2}, & \mbox{für } t \ge 1 \end{cases} [/mm]

Danke für die Anmerkung! Kannst du mir vielleicht einen Tipp geben, wie ich sowas berechne?

Grüßle
Gero

Bezug
                        
Bezug
Zufallsvariable finden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Mo 02.06.2008
Autor: koepper

Hallo Gero,

eine reelle ZV X ist eine Abbildung $X [mm] \colon \Omega \to \IR$. [/mm] Zeichne dir ein Koordinatensystem und trage auf der x-Achse [mm] $\Omega [/mm] = [0, 1]$ auf und auf der y-Achse die reellen Zahlen. Überlege dann, wie sich die Verteilungsfunktion aus dem Verlauf der ZV ergibt. Du kannst der Einfachheit halber davon ausgehen, daß die ZV monoton steigt. Da das Lebesgue-Maß P einfach gesagt die Intervallbreite mißt und $F(k) = P(X [mm] \le [/mm] k) = [mm] P(\{\omega \in \Omega \mid X(\omega) \le k\})$ [/mm] ist, sollte wegen F(1) = 0 am besten X(0) = 1 sein. Mach dir das an der Skizze klar. Wenn X nun steigt, ist F(k) genau das Urbild von k unter X. Damit dürfte die Lösung klar sein... Think!

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]