matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieZufallsvariable bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Zufallsvariable bestimmen
Zufallsvariable bestimmen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Mo 03.02.2014
Autor: FreddyzZz

Aufgabe
X und Y seien unabhängige, [mm] \IN_{0} [/mm] wertige Zufallsvariablen mit P[X=k] = P[Y=k]= [mm] (1-p)^k [/mm] p,k [mm] \in \IN_{0}, [/mm] wobei p [mm] \in [/mm] (0,1). Berechnen Sie P[X=k|X+Y = l] k,l € [mm] \IN_{0} [/mm]

Hi,

ich schon wieder... Bei diesen Aufgaben mit ZVA bestimmen kommen ich einfach nicht zurecht :(
P[X=k|X+Y = l] das bedeutet ja nichts anderes als die Wahrscheinlichkeit das X = k ist wenn, also unter der Vorrausetzung, das X+Y = l ist.
Zum Auseinander ziehen braucht man den Satz von Bayes? Oder wie fängt man da am besten an.

•Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zufallsvariable bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mo 03.02.2014
Autor: luis52

Moin,


$P[X=k [mm] \mid [/mm] X+Y = [mm] l]=\frac{P[X=k , X+Y = l]}{P(X+Y = l]}=\dots$ [/mm]

Bezug
                
Bezug
Zufallsvariable bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Mo 03.02.2014
Autor: FreddyzZz

Hi,
genau, das ist ja der satz von Bayes.

P[X=k [mm] \mid [/mm] X+Y = [mm] l]=\frac{P[X=k , X+Y = l]}{P(X+Y = l]}= \frac{P[X=k ] * P [X+Y = l]}{P(X+Y = l]}= \frac{P[X=k] P[X = k] P[Y = l - k]}{P(X = k] * P[Y = l-k]}= [/mm]
da sie ja unabhängig sind. Darf man die P nun kürzen? :D Dann bliebe ja nur P[X=k] = [mm] (1-p)^k [/mm] übrig und man wäre fertig?

Bezug
                        
Bezug
Zufallsvariable bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 03.02.2014
Autor: luis52

Wieso gilt

$ [mm] \frac{P[X=k , X+Y = l]}{P(X+Y = l]}= \frac{P[X=k ] * P [X+Y = l]}{P(X+Y = l]}$ [/mm] ?


> da sie ja unabhängig sind.  

$X$ und $Y$ sind unabhaengig, aber doch nicht $X$ und $X+Y$.

Bezug
                                
Bezug
Zufallsvariable bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mo 03.02.2014
Autor: FreddyzZz

ohmann, panne....

$ [mm] \frac{P[X=k , X+Y = l]}{P(X+Y = l]}= \frac{P[X=k ] \cdot{} P [X+Y = l]}{P(X+Y = l]} [/mm] $

darf ich aber den Nenner so aufteilen? P[X=k, Y = l-k]
und dann einfach ausrechnen oder wie ist das?
also [mm] \frac{(1-p)^k * ((1-p)^k + (1-p)^k)}{((1-p)^k + (1-p)^{l-k})} [/mm]

aber das macht ja auch kaum sinn... verstehe gerade nicht wie ich das auflösen kann, außer auseinander ziehen...


Bezug
                                        
Bezug
Zufallsvariable bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mo 03.02.2014
Autor: luis52


> ohmann, panne....

Nana.

>  
> [mm]\frac{P[X=k , X+Y = l]}{P(X+Y = l]}= \frac{P[X=k ] \cdot{} P [X+Y = l]}{P(X+Y = l]}[/mm]
>
> darf ich aber den Nenner so aufteilen?

Hm, Nenner ist bei mir das, was unten steht.
Aber viellenicht haben die jungen Leute von heute
da andere Ansichten. ;-)

Also: Fuer den *Zaehler* rechne ich so: Mit [mm] $k\le [/mm] l$ ist

$P[X=k , X+Y = l]=P[X=k, Y = [mm] l-k]=P[X=k]\cdot [/mm] P[ Y = l-k]$.


Fuer den Nenner musst du dir ein paar Gedanken machen zur Verteilung von $X+Y$.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]