matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvariable, Verteilungfkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Zufallsvariable, Verteilungfkt
Zufallsvariable, Verteilungfkt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable, Verteilungfkt: Aufgabe
Status: (Frage) überfällig Status 
Datum: 14:57 So 27.09.2015
Autor: Yomu

Aufgabe 1
Sei (Ω, A, P) ein Wahrscheinlichkeitsraum, X : Ω → [mm] \IR [/mm] eine beliebige Zufallsvariable mit stetiger, streng monoton wachsender Verteilungsfunktion [mm] F_{X}: [/mm] R → [0, 1].
Sei ferner U : Ω → [0, 1] eine gleichverteilte Zufallsvariable auf [0, 1]. Zeigen Sie:
a) Y := [mm] F_{X}^{ -1}(U) [/mm] ist eine R-wertige Zufallsvariable auf (Ω, A, P).
b) [mm] P_{Y} [/mm] = [mm] P_{X}. [/mm]

Aufgabe 2
Es sei r : [mm] \IN [/mm] → [mm] \IQ [/mm] eine bijektive Abbildung. Wir setzen [mm] r_{j}:= [/mm] r(j), j ≥ 1. Zeigen
Sie:
a) Durch F(x) := [mm] 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x) [/mm] x ∈ [mm] \IR [/mm]
wird eine streng monoton wachsende Verteilungsfunktion definiert.

Hallo,
Also bei der ersten Aufgabe hab ich nicht so die Idee, es gilt fuer B [mm] \in [/mm] A: [mm] Y^{-1}(B)= \{ \omega \in \Omega | F_{X}^{-1}(U(\omega)) \in B \} [/mm] = [mm] \{ \omega \in \Omega | U(\omega) \in F_{X}(B) \} [/mm] , nur hilft mir das nicht weiter.

Bei der zweiten seh ich die Monotonie aber wieso sollte sie streng monoton sein, es gilt doch fuer x=1 , y=1,5 und alle j [mm] \in \IN [/mm] : x [mm] \in [r_{j}, \infty) \gdw [/mm] y [mm] \in [r_{j}, \infty) [/mm] und somit F(x)=F(y)
rechtsseitig stetig: [mm] \lim_{n \downarrow \infty} 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x) =2*\summe_{i=1}^{\infty}3^{j}* \lim_{n \downarrow \infty}1_{[r_{j} ,\infty)}(x) =2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x) [/mm]

weiter:
[mm] \lim_{x \to -\infty}F(x)= \lim_{x \to -\infty} 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}*\lim_{x \to -\infty} 1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}*0 [/mm] =0
aber es gilt:
[mm] \lim_{x \to \infty}F(x)= \lim_{x \to \infty} 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}*\lim_{x \to \infty} 1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}=2*(3/2)=3 [/mm]
was aber bei einer Verteilungsfunktion nicht sein kann.

Hoffentlich kann mir jemad weiterhelfen,
MfG Yomu

        
Bezug
Zufallsvariable, Verteilungfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Di 29.09.2015
Autor: wauwau


> Sei (Ω, A, P) ein Wahrscheinlichkeitsraum, X : Ω →
> [mm]\IR[/mm] eine beliebige Zufallsvariable mit stetiger, streng
> monoton wachsender Verteilungsfunktion [mm]F_{X}:[/mm] R → [0,
> 1].
>  Sei ferner U : Ω → [0, 1] eine gleichverteilte
> Zufallsvariable auf [0, 1]. Zeigen Sie:
>  a) Y := [mm]F_{X}^{ -1}(U)[/mm] ist eine R-wertige Zufallsvariable
> auf (Ω, A, P).
>  b) [mm]P_{Y}[/mm] = [mm]P_{X}.[/mm]
>  Es sei r : [mm]\IN[/mm] → [mm]\IQ[/mm] eine bijektive Abbildung. Wir
> setzen [mm]r_{j}:=[/mm] r(j), j ≥ 1. Zeigen
>  Sie:
>  a) Durch F(x) := [mm]2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x)[/mm]
> x ∈ [mm]\IR[/mm]

das muss mal [mm] $3^{-j} [/mm] heißen!<

>  wird eine streng monoton wachsende Verteilungsfunktion
> definiert.
>  Hallo,
>  Also bei der ersten Aufgabe hab ich nicht so die Idee, es
> gilt fuer B [mm]\in[/mm] A: [mm]Y^{-1}(B)= \{ \omega \in \Omega | F_{X}^{-1}(U(\omega)) \in B \}[/mm]
> = [mm]\{ \omega \in \Omega | U(\omega) \in F_{X}(B) \}[/mm] , nur
> hilft mir das nicht weiter.
>  
> Bei der zweiten seh ich die Monotonie aber wieso sollte sie
> streng monoton sein, es gilt doch fuer x=1 , y=1,5 und alle
> j [mm]\in \IN[/mm] : x [mm]\in [r_{j}, \infty) \gdw[/mm] y [mm]\in [r_{j}, \infty)[/mm]
> und somit F(x)=F(y)

r ist eine bijektive Abbildung von [mm] $\IN \to \IQ$ [/mm] d.h die [mm] $r_i$ [/mm] nehmen alle rationalen Werte an!! Daher: für $x<y$ gibt es ein [mm] $r_i$ [/mm] mit $x < [mm] r_i

>  rechtsseitig stetig: [mm]\lim_{n \downarrow \infty} 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x) =2*\summe_{i=1}^{\infty}3^{j}* \lim_{n \downarrow \infty}1_{[r_{j} ,\infty)}(x) =2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x)[/mm]
>  
> weiter:
>  [mm]\lim_{x \to -\infty}F(x)= \lim_{x \to -\infty} 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}*\lim_{x \to -\infty} 1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}*0[/mm]
> =0
>  aber es gilt:
>  [mm]\lim_{x \to \infty}F(x)= \lim_{x \to \infty} 2*\summe_{i=1}^{\infty}3^{j}*1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}*\lim_{x \to \infty} 1_{[r_{j} ,\infty)}(x)=2*\summe_{i=1}^{\infty}3^{j}=2*(3/2)=3[/mm]

da du von i=1 weg summierst ist die Summe nicht [mm] $\frac{3}{2}$ [/mm] sondern [mm] $\frac{1}{2}$ [/mm]

>  
> was aber bei einer Verteilungsfunktion nicht sein kann.
>  
> Hoffentlich kann mir jemad weiterhelfen,
>  MfG Yomu


Bezug
        
Bezug
Zufallsvariable, Verteilungfkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:09 Di 06.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]