matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvariable
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Zufallsvariable
Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:27 Mi 28.10.2009
Autor: mb588

Aufgabe
Der Zufallsgenerator eines Computers kann nur unabhängige Zufallszahlen erzeugen, die aus einer Gleichverteilung über dem Intervall [0,1] stammen. Ein Benutzer möchte aber unabhängige Zufallszahlen mit der Verteilungsfunktion:

[mm] f(x)=\begin{cases} 1-e^{-x}, & \mbox{für } x\ge 0 \mbox{,} \\ 0, & \mbox{sonst,}\end{cases} [/mm]

erzeugen. Um dies zu erreichen, berechnet der Benutzer die Zufallsvariablen [mm] T(X_{j}) [/mm] für [mm] T:[0,1[\to\IR [/mm] , wobei [mm] X_{j} [/mm] die Zufallszahlen seien, die der Computer ausgibt. Welche Funktion T sollte der Benutzer wählen.

Huhu.
Benötige Hilfe bei dieser Aufgabe. Prinzipiell ist mir das klar. Ich hab das so verstanden, dass der Benutzter bei den Zufallszaheln, keine Gleichverteilung haben will, sondern in der Form wie die Verteilungsfunktion ist. Mir ist jetzt aber überhaupt nicht klar, wie ich an die Sache rangehen soll. Ich häte schon mal keine Idee, wie ich die Zufallsvariable "erraten" soll und mathematisch das zu Zeigen da hab ich noch garkein Plan. Hab ich die Aufgabe denn richtig verstanden? Wenn ja wie würde ich jetzt weiter machen?

        
Bezug
Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mi 28.10.2009
Autor: felixf

Hallo!

> Der Zufallsgenerator eines Computers kann nur unabhängige
> Zufallszahlen erzeugen, die aus einer Gleichverteilung
> über dem Intervall [0,1] stammen. Ein Benutzer möchte
> aber unabhängige Zufallszahlen mit der
> Verteilungsfunktion:
>  
> [mm]f(x)=\begin{cases} 1-e^{-x}, & \mbox{für } x\ge 0 \mbox{,} \\ 0, & \mbox{sonst,}\end{cases}[/mm]
>  
> erzeugen. Um dies zu erreichen, berechnet der Benutzer die
> Zufallsvariablen [mm]T(X_{j})[/mm] für [mm]T:[0,1[\to\IR[/mm] , wobei [mm]X_{j}[/mm]
> die Zufallszahlen seien, die der Computer ausgibt. Welche
> Funktion T sollte der Benutzer wählen.
>
>  Huhu.
>  Benötige Hilfe bei dieser Aufgabe. Prinzipiell ist mir
> das klar. Ich hab das so verstanden, dass der Benutzter bei
> den Zufallszaheln, keine Gleichverteilung haben will,
> sondern in der Form wie die Verteilungsfunktion ist.

Genau.

> Mir
> ist jetzt aber überhaupt nicht klar, wie ich an die Sache
> rangehen soll. Ich häte schon mal keine Idee, wie ich die
> Zufallsvariable "erraten" soll und mathematisch das zu
> Zeigen da hab ich noch garkein Plan. Hab ich die Aufgabe
> denn richtig verstanden? Wenn ja wie würde ich jetzt
> weiter machen?

Es gilt ja [mm] $P(X_j \le [/mm] x) = x$ fuer $x [mm] \in [/mm] [0, 1]$. Wenn nun [mm] $P(T(X_j) \le [/mm] x) = f(x) = [mm] P(X_j \le [/mm] f(x))$ sein soll, wie kannst du wohl am geschicktesten $T$ waehlen? (Bedenke, dass $f$ injektiv ist.)

LG Felix


Bezug
                
Bezug
Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 28.10.2009
Autor: piccolo1986

hey, kann man dann nicht einfach [mm] T(X_{j})=X_{j} [/mm] setzen???

Bezug
                        
Bezug
Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Mi 28.10.2009
Autor: felixf

Hallo!

> hey, kann man dann nicht einfach [mm]T(X_{j})=X_{j}[/mm] setzen???

Nein: dann waer [mm] $P(T(X_j) \le [/mm] x) = x$ und nicht [mm] $P(T(X_j) \le [/mm] x) = f(x)$.

LG Felix



Bezug
                                
Bezug
Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Mi 28.10.2009
Autor: piccolo1986

also ist es dann [mm] T(X_{j})=f(X_{j}). [/mm] oder könntest du das nochmal etwas ausführlicher erklären??

mfg

Bezug
                                        
Bezug
Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mi 28.10.2009
Autor: felixf

Hallo!

> also ist es dann [mm]T(X_{j})=f(X_{j}).[/mm]

Nein. Warum sollte das so sein?

Rate doch nicht einfach, sondern versuch mal umzuformen. Es soll ja [mm] $P(T(X_j) \le [/mm] x) = [mm] P(X_j \le [/mm] f(x))$ sein; dies ist z.B. erfuellt wenn [mm] $T(X_j) \le [/mm] x [mm] \Leftrightarrow X_j \le [/mm] f(x)$ gilt. Jetzt sollte es wirklich nicht mehr schwer sein, zu erraten, wie man $T$ waehlen koennte!

LG Felix


Bezug
                                                
Bezug
Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Mi 28.10.2009
Autor: mb588

Ich glaub ich habs. Ich würde vermuten ich wähle die Umkehrfunktion von f(x), da [mm] T:[0,1[\to\IR [/mm] abbildet. Also dann wäre T(x)=-ln(1-x) mit [mm] x\in [/mm] [0,1[

Bezug
        
Bezug
Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Mi 28.10.2009
Autor: luis52

Moin,

[]da schau her (Folie 22).

vg Luis

Bezug
                
Bezug
Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mi 28.10.2009
Autor: mb588

Jo genau und so wie ich mir das gedacht habe, müsste das ja denn richtig sein. Was ja auch eiegntlich klar ist, da F eine Abbildung [mm] F:\IR\to [/mm] [0,1] ist und mit der Umkehrfunktion hab ich dann die gewünschte [mm] F^{-1}:[0,1[\to\IR [/mm] Zufallsvariable.

Bezug
                        
Bezug
Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mi 28.10.2009
Autor: felixf

Hallo!

> Jo genau und so wie ich mir das gedacht habe, müsste das
> ja denn richtig sein. Was ja auch eiegntlich klar ist, da F
> eine Abbildung [mm]F:\IR\to[/mm] [0,1] ist und mit der
> Umkehrfunktion hab ich dann die gewünschte
> [mm]F^{-1}:[0,1[\to\IR[/mm] Zufallsvariable.

Fast: die gesuchte Zufallsvariable ist [mm] $F^{-1} \circ X_j [/mm] = [mm] F^{-1}(X_j)$, [/mm] und nicht [mm] $F^{-1}$ [/mm] selber.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]