matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungZufallsexperiment
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Zufallsexperiment
Zufallsexperiment < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsexperiment: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 18:02 Mo 20.08.2007
Autor: Noosheh

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo.
Also ich hab große Probleme in Mathe und verstehe meistens nichts.
Als Hausaufgabe haben wir 3 Aufgaben aufgekriegt,die wir nächste Std.bzw.bereits morgen vorstellen müssen.
Wäre echt nett wenn ihr mir dabei helfen könntet.

Aufgabe 1:

HErr Müller muss bei seiner Fahrt mit der Straßenbahn nach Hause am Karlsplatz in Linie 1 o. 2 am Schloßplatz in Linie 3,4, oder 5 einsteigen.Er benutzt jeweils diejenige der in Frage kommenden Linien,die als erste eintritt.

a)Inwiefern stellt jede Nachhausefahrt ein Zufallsexperiment dar?Gib die Ergebnismenge an.
b)Gib das Ergebnis an: "Herr Müller fährt mit der Lienie (fährt nicht mit der Linie 5)"
c)Welche Ergebnisse sind eingetreten,wenn Herr Müller zunächst mit der Linie 2 fährt und dann in die Linie 3 umsteigt?

Aufgabe 2:
Eine rote,eine schwarze und eine weiße Kugel werden zufällig auf 3 Kästchen mit den Nummern 1,2 und 3 verteilt,wobei auch mehrere Kugeln in einem Kästchen liegen dürfen.Es interessiert die Belegung dieser Kästchen.Gib die folgenden Ereignisse in aufzählender Form an.

a)Nur das Kästchen Nr.1 ist leer
b)Zwei Kästchen sind leer
c)Die rote Kugel ist in Kästchen Nr.2
d)Die schwarze Kugel ist in Nr.1
e)Nur die rote Kugel ist in Kästchen Nr.2
f)In Kästchen Nr.3 sind 2 Kugeln.


So das waren die 2 Aufgaben.
Danke



        
Bezug
Zufallsexperiment: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mo 20.08.2007
Autor: Kroni

Hi und [willkommenmr],

> Aufgabe 1:
>  
> HErr Müller muss bei seiner Fahrt mit der Straßenbahn nach
> Hause am Karlsplatz in Linie 1 o. 2 am Schloßplatz in Linie
> 3,4, oder 5 einsteigen.Er benutzt jeweils diejenige der in
> Frage kommenden Linien,die als erste eintritt.
>  
> a)Inwiefern stellt jede Nachhausefahrt ein
> Zufallsexperiment dar?Gib die Ergebnismenge an.

Hier kannst du das doch so sagen: Zunächst hat Müller die Möglichkeit in Linie 1 oder 2 einsteigen (er zieht sagen wir einfach aus einem Topf, der zwei Bälle enthält entweder den mit Nr. 1 oder den mit Nr. 2).
Dann hat Müller die Möglichkeit beim zweiten mal "ziehen" Linie 3,4 oder 5 zu erwischen. Ist also wohl ein Baumdiagramm mit zwei Stufen (erste: Entweder L1 oder L2, die zweite Stufe weist du bestimmt selbst).
Jetzt kannst du mal die Annahme treffen, dass jede Linie gleichwahrscheinlich ist, und dann mal weiterrechnen.

>  b)Gib das Ergebnis an: "Herr Müller fährt mit der Lienie
> (fährt nicht mit der Linie 5)"

Hier die Wahrscheinlichkeit berechnen. Das bekommst du aber mit Sicherheit hin (zur Not am Baumdiagramm ablesen, das hilft immer!).

>  c)Welche Ergebnisse sind eingetreten,wenn Herr Müller
> zunächst mit der Linie 2 fährt und dann in die Linie 3
> umsteigt?

Hier mal gucken, wie ihr das notiert habt. Wird wohl sowas gemeint sein wie Ereignis (A/B) wobei das / sowas meint wie "unter der Bedingung".

>  
> Aufgabe 2:
>  Eine rote,eine schwarze und eine weiße Kugel werden
> zufällig auf 3 Kästchen mit den Nummern 1,2 und 3
> verteilt,wobei auch mehrere Kugeln in einem Kästchen liegen
> dürfen.Es interessiert die Belegung dieser Kästchen.Gib die
> folgenden Ereignisse in aufzählender Form an.
>  
> a)Nur das Kästchen Nr.1 ist leer

Kästchen 1 ist leer. Dann müssen zwangsläufig in Kästchen 2 und 3 mindestens ein Ball drin sein, denns onst wäre diese Bedingung nicht erfüllt. Dann kannst du dir noch überlegen, wie du drei Bällchen in zwei Kästchen legen kannst, wenn in jedem mindestens ein Ball liegen muss. Da gibts nicht so viele Möglichkeiten.

>  b)Zwei Kästchen sind leer

Das sagt eigentlichs chon alles. Denk mal drüber nach, was passiert, wenn 2 Kästchen leer sein sollen. Es wird nur nicht gesagt, welches.

>  c)Die rote Kugel ist in Kästchen Nr.2

Was sagt das über die anderen Kugeln aus? Nichts. Also kannst du diese frei verteilen.

>  d)Die schwarze Kugel ist in Nr.1

Vom Prinzip her das selbe wie Aufgabe c

>  e)Nur die rote Kugel ist in Kästchen Nr.2

Was sagt das über die anderen beiden aus? Können die dann noch in Kästchen Nr. 2 sein? Wo können diese dann sonst noch sein?

>  f)In Kästchen Nr.3 sind 2 Kugeln.

Da kannst du auch selbst drüber nachdenken. Das kannst du hinbekommen.

Das einzige was ich incht recht verstehe ist, was unter "gib in Aufzählender Form" an. Vlt. sollte man dann hinschreiben, in welchem Kästchen sich jeweils die Kugeln befinden und dann aufzählen.
Wenn dem so ist empfehle ich dir so etwas wie eine Tabelle der Form

          Rot Schwarz Weiß
Kästchen


So kannst du dann alle Möglichkeiten schön untereinander schreiben.

Lieben Gruß,

Kroni

>  
>
> So das waren die 2 Aufgaben.
>  Danke
>  
>  


Bezug
                
Bezug
Zufallsexperiment: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mo 20.08.2007
Autor: Noosheh

Wow
Das ging ja schnell.
Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]