matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenZueinander konjugierte Matrize
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Zueinander konjugierte Matrize
Zueinander konjugierte Matrize < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zueinander konjugierte Matrize: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 07.07.2008
Autor: svenpile

Aufgabe
Aufg.1

a.) Sei K ein algebraisch abgeschlossener Körper und sei n [mm] \in \IN, 1\le [/mm] n [mm] \le [/mm] 6. Seien A,B [mm] \in [/mm] M(n,K) zwei nilpotente Matrizen. Zeigen sie A und B sind genau dann zueinander konjugiert, wenn [mm] p_A=p_B [/mm] und rk(A)=rk(B).

b.) Geben sie zwei nilpotente Matrizen aus M(7,K) an mit gleichem Rang und gleichem Minimalpolynom, die jedoch nicht zueinander konjugiert sind.

Hallo

zu a.)

Also da die Matrizen ähnlich sind müsste B ja folgendermaßen darstellbar sein
[mm] B=S^{-1}AS. [/mm] Leider weiß ich aber nicht wie man allgemein nilpotente Matrizen aufstellen kann und somit komme ich bei dieser Aufgabe nicht weiter.

zu b.) Da wäre auch ein kleiner Tipp ganz gut

Liebe Grüße

Sven

        
Bezug
Zueinander konjugierte Matrize: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mo 07.07.2008
Autor: angela.h.b.


> Aufg.1
>  
> a.) Sei K ein algebraisch abgeschlossener Körper und sei n
> [mm]\in \IN, 1\le[/mm] n [mm]\le[/mm] 6. Seien A,B [mm]\in[/mm] M(n,K) zwei nilpotente
> Matrizen. Zeigen sie A und B sind genau dann zueinander
> konjugiert, wenn [mm]p_A=p_B[/mm] und rk(A)=rk(B).

Hallo,

ich würde hierfür zeigen, daß die beiden Matrizen die gleiche JNF haben.

Hierfür mußt Du wohl die Fälle n=1,...,6 getrennt untersuchen.

Wenn Du das durchgezogen hast, fällt Dir vermutlich ein Beispiel für b) ein.

Überleg Dir zunächst, welche Eigenwerte nilpotente Matrizen haben, was das Minimalpolynom mit der JNF zu tunng hat und was die Ränge mit der Dimension des Eigenraumes.

Gruß v. Angela



>  
> b.) Geben sie zwei nilpotente Matrizen aus M(7,K) an mit
> gleichem Rang und gleichem Minimalpolynom, die jedoch nicht
> zueinander konjugiert sind.
>  Hallo
>  
> zu a.)
>  
> Also da die Matrizen ähnlich sind müsste B ja
> folgendermaßen darstellbar sein
>  [mm]B=S^{-1}AS.[/mm] Leider weiß ich aber nicht wie man allgemein
> nilpotente Matrizen aufstellen kann und somit komme ich bei
> dieser Aufgabe nicht weiter.
>  
> zu b.) Da wäre auch ein kleiner Tipp ganz gut
>  
> Liebe Grüße
>  
> Sven


Bezug
                
Bezug
Zueinander konjugierte Matrize: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Di 08.07.2008
Autor: svenpile

also ich muss ja 2 Richtungen zeigen.

Die Hinrichtung :
Dort ist ja vorrausgesetzt, dass die Matriten zueinander konjugiert sind.Das wiederum heißt aber doch , dass die Matrizen dieselbe Jordannormalform bis auf vertauschung der Jordanblöcke haben.
Und daher folgt doch direkt, dass das Minimalpolynom und der Rang gleich ist, denn die Jordanblöcke geben schließlich Auskunft über das Minimalpolynom8das lässt sich darüber ja herleiten)
Und wenn die Anzahl der Blöcke gleich ist (bis auf Vertauschung übereinstimm9 ist auch der Rang gleich.

Bei der Rückrichtung habe ich mir folgendes überlegt :

Minimalpolynom und rang sind ja bei beiden Matrizen gleich. Dann könnte ich diese ja auf Normalform mit Nulldiagonale bringen. Und da das Minimalpolynom gleich ist müsste die Anzahlder Jordanblöcke auch gleich sein. Aber wie zeige ich das die Matrizen dann ähnlich sind?

Bezug
                        
Bezug
Zueinander konjugierte Matrize: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Mi 09.07.2008
Autor: angela.h.b.


> Bei der Rückrichtung habe ich mir folgendes überlegt :
>  
> Minimalpolynom und rang sind ja bei beiden Matrizen gleich.
> Dann könnte ich diese ja auf Normalform mit Nulldiagonale
> bringen. Und da das Minimalpolynom gleich ist müsste die
> Anzahlder Jordanblöcke auch gleich sein.

Hallo,

nein, das Minimalpolynom sagt, wie groß das größte Blöckchen ist,

und der Rang, wieviele Blöckchen es gibt.

> Aber wie zeige ich
> das die Matrizen dann ähnlich sind?

Mühselig ernähert sich das Eichhörnchen:

ich würde jetzt alle möglichen Fälle untersuchen.Vielleicht fiele geschickteren Menschen Geschickteres ein - aber man kommt so zum Ziel, und die Anstrengung hält sich in Grenzen.

Du sollst ja nur nxn-Matrizen bis n=6 untersuchen.

Z.B.
n=6  
grad [mm] p_A=2, [/mm] rangA=3
Welches müssen in diesem Fall die Blöckchen sein?

Und dasselbe Spiel mit allen Möglichkeiten.

Gruß v Angela




Bezug
                                
Bezug
Zueinander konjugierte Matrize: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Mi 09.07.2008
Autor: svenpile

Erstmal vielen Dank, es tut mir leid aber leider kapiere ich das immer noch nicht so richtig. Also wenn ich jetzt wie du alle Matrizen aufstelle für den Fall n=6 das sind elf in mienem Fall. Dann reicht es ja quasi zu zeigen, dass die elf verschiedenen Matrizen jeweils eine unterschiedliche Jordan Normalform besitzen und somit nicht zueinander konjugiert sind.
Also schreibe ich nur die elf Matrizen hin und das wars dann ja eigentlich, da man die unterschiedliche JNF erkennt.

Bezug
                                        
Bezug
Zueinander konjugierte Matrize: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Mi 09.07.2008
Autor: angela.h.b.

Hallo,

wir wollen ja jetzt zeigen, daß wir, wenn wir zwei nilpotente nxn-Matrizen gegeben haben, die dasselbe Minimalpolynom und denselben Rang haben, zwei ähnliche Matrizen in der Hand halten.

Dazu möchte ich zeigen, daß die beiden Matrizen gar nicht anders können, als dieselbe JNF zu haben. (Daraus folgt ja die Ähnlichkeit)

Das tue ich, indem ich zeige, daß sich bei vorgegebenem Minimalpolynom und Rang nur eine einzige JNF ergeben kann, die beiden JNF also gleich und somit die Matrizen ähnlich sein müssen.

Gruß v. Angela

Bezug
                                
Bezug
Zueinander konjugierte Matrize: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Mi 09.07.2008
Autor: svenpile

Nur noch zu deinem Beispiel grad [mm] p_A=2 [/mm] und rang A =3 diese Matirx müsste doch so ausschauen:

[mm] \pmat{ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0} [/mm]

Bezug
                                        
Bezug
Zueinander konjugierte Matrize: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Mi 09.07.2008
Autor: angela.h.b.


> Nur noch zu deinem Beispiel grad [mm]p_A=2[/mm] und rang A =3 diese
> Matirx müsste doch so ausschauen:
>  
> [mm]\pmat{ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 &0 & 0 & 0 & 0 & 0}[/mm]

Hallo,

ja, genau. Eine andere Möglichkeit gibt's bei dieser Vorgabe von Rang und grad nicht, und das ist entscheidend.

Gruß v. Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]