matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Zinseszins
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Zinseszins
Zinseszins < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zinseszins: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Do 16.10.2014
Autor: steve.joke

Aufgabe
Wenn 1 € mit 100% pro Jahr verzinst wird, bekomme ich nach einem Jahr 2 €. Wenn die Verzin-sung nur halb so groß ist, dafür aber halbjährlich die Zinsen gutgeschrieben werden, bekomme ich nach einem Jahr mehr! Wenn der Zinssatz wiederum halbiert wird, aber dafür vierteljährlich gutgeschrieben wird, bekomme ich nach einem Jahr noch mehr. Wenn jede Sekunde verzinst wird, werde ich dann nach einem Jahr Millionär?!

Berechne, welcher Betrag bei halbjährlicher Verzinsung, welcher bei monatlicher Verzinsung in einem Jahr entsteht. Bekommt man bei sekündlicher Verzinsung mehr als 3 Euro?

Hallo, die Lösung zu dieser Aufgabe sieht wie folgt aus:

[mm] K_n=K_0\cdotq^n=K_0\cdot(1+\bruch{p}{100})^n [/mm]

K(0)=1

Halbjährliche Verzinsung:   [mm] K(t)=K(0)\cdot(1+\bruch{1}{2})^t [/mm] , mit t=2 Halbjahre folgt K(2)=2,25

Monatliche Verzinsung:   [mm] K(t)=K(0)\cdot(1+\bruch{1}{12})^t [/mm] , mit t=12 Monate pro Jahr folgt K(12)=2,61

Erste Frage:  Wieso setzen die bei q [mm] \bruch{1}{12}, [/mm] hätte hier p=25% sein müssen? Es wurde doch der Zinssatz von 50% nochmal halbiert.

Sekundliche Verzinsung: [mm] K(t)=K(0)\cdot(1+\bruch{1}{31536000})^t [/mm] , mit t=31536000 Sekunden pro Jahr folgt K(31536000)=2,71828

Auch hier genauso, wieso gilt: [mm] \bruch{p}{100}=\bruch{1}{31536000}???? [/mm]


Grüße


        
Bezug
Zinseszins: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 16.10.2014
Autor: MathePower

Hallo steve.joke,

> Wenn 1 € mit 100% pro Jahr verzinst wird, bekomme ich
> nach einem Jahr 2 €. Wenn die Verzin-sung nur halb so
> groß ist, dafür aber halbjährlich die Zinsen
> gutgeschrieben werden, bekomme ich nach einem Jahr mehr!
> Wenn der Zinssatz wiederum halbiert wird, aber dafür
> vierteljährlich gutgeschrieben wird, bekomme ich nach
> einem Jahr noch mehr. Wenn jede Sekunde verzinst wird,
> werde ich dann nach einem Jahr Millionär?!
>  
> Berechne, welcher Betrag bei halbjährlicher Verzinsung,
> welcher bei monatlicher Verzinsung in einem Jahr entsteht.
> Bekommt man bei sekündlicher Verzinsung mehr als 3 Euro?
>  Hallo, die Lösung zu dieser Aufgabe sieht wie folgt aus:
>  
> [mm]K_n=K_0\cdotq^n=K_0\cdot(1+\bruch{p}{100})^n[/mm]
>
> K(0)=1
>  
> Halbjährliche Verzinsung:  
> [mm]K(t)=K(0)\cdot(1+\bruch{1}{2})^t[/mm] , mit t=2 Halbjahre folgt
> K(2)=2,25
>  
> Monatliche Verzinsung:   [mm]K(t)=K(0)\cdot(1+\bruch{1}{12})^t[/mm]
> , mit t=12 Monate pro Jahr folgt K(12)=2,61
>  
> Erste Frage:  Wieso setzen die bei q [mm]\bruch{1}{12},[/mm] hätte
> hier p=25% sein müssen? Es wurde doch der Zinssatz von 50%
> nochmal halbiert.
>


Das trifft zu, wenn vierteljährlich verzinst wird.
Hier wird aber monatlich verzinst.


> Sekundliche Verzinsung:
> [mm]K(t)=K(0)\cdot(1+\bruch{1}{31536000})^t[/mm] , mit t=31536000
> Sekunden pro Jahr folgt K(31536000)=2,71828
>  
> Auch hier genauso, wieso gilt:
> [mm]\bruch{p}{100}=\bruch{1}{31536000}????[/mm]

>


Nun, die 1 € werden mit jährlich mit 100 % verzinst.
Das macht dann eine sekündliche Verzinsung von

[mm]p=\bruch{100}{365*86400} \ \% =\bruch{1}{365*86400} [/mm]


>
> Grüße

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]