matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieZiegenproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Ziegenproblem
Ziegenproblem < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ziegenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Do 15.04.2010
Autor: MontBlanc

Hallo,

das "Ziegenproblem" ist denke ich den meisten bekannt, falls nicht, hier eine kurze zusammenfassung:

Bei einer Fernsehshow werden einem Kandidaten drei Türen zur Wahl gegeben, hinter einer ist ein Preis, hinter den anderen jeweils eine Ziege. Entscheidet sich der Kandidat für eine Tür, so öffnet der Game-Master eine andere Tür hinter der eine Ziege ist. Dem Kandidaten wird dann angeboten zu nochmal die Tür zu wechseln. Die Frage ist, ob dies sinnvoll ist.

So, dass es sinnvoll ist, wissen wahrscheinlich die meisten. Auch mir ist das klar. Nur habe ich ein Problem beim "ausrechnen".

Also, seien A,B,C die Ereignisse, dass der Preis hinter Tür A,B oder C respektive ist. lassen wir den Game-Master Tor B öffnen, nennen wir das Ereignis [mm] G_{B}, [/mm] und den Kandidaten Tor A wählen . Dann ist

[mm] P(G_B|A)=\bruch{1}{2} [/mm]
Das wäre mir intuitiv auch klar.

[mm] P(G_B|B)=0 [/mm]

ist auch klar, weil er ja nicht die Tür öffnet hinter der der Preis steht

Nun meine Frage: Warum ist [mm] P(G_B|C)=1 [/mm] ? Das will mir einfach nicht in den Kopf, auch bei wikipedia habe ich es nicht verstanden.

Lg und danke für antworten!



        
Bezug
Ziegenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Do 15.04.2010
Autor: mathfunnel

Hallo eXeQteR,

aus [mm] $P(A|G_B) [/mm] = [mm] \frac{1}{2}$ [/mm] folgt, dass der Kandidat $B$ gewählt hat!
Deshalb gilt auch [mm] $P(C|G_B) [/mm] = [mm] \frac{1}{2} \neq [/mm] 1$. Ich nehme an, dass
Du nur etwas falsch abgeschrieben hast. Kann das sein?

Gruß mathfunnel


Bezug
                
Bezug
Ziegenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 15.04.2010
Autor: MontBlanc

Hallo,

nein, das kann nicht sein. Ansonsten wäre meine Frage ja hinfällig gewesen.

Es ging mir explizit darum, dass die Wahrscheinlichkeit mit 1 angegeben wurde. Das hat aber folgenden - wie ich inzwischen herausgefunden habe - Hintergrund, und zwar:

Angenommen der Kandidat wählt Tor A.

Dann ist die Wahrscheinlichkeit, dass der Game-Master Tor B öffnet vorausgesetzt der Preis ist hinter A = [mm] \bruch{1}{2}, [/mm] weil er ja entweder B oder C öffnen kann, hinter beiden ist eine Ziege.

Die Wahrscheinlichkeit, dass der Game-Master Tor B öffnet, vorausgesetzt der Preis ist da hinter ist logischerweise null, da er ja ein Tor mit einer Ziege öffnen muss.

Die Wahrscheinlichkeit, dass der Game-Master Tor B öffnet, vorausgesetzt der Preis ist hinter C ist 1, da der Kandidat A gewählt hat, der Preis hinter C ist, er muss also B öffnen um eine Ziege zu zeigen.

Damit wäre das ganze dann auch geklärt. Das ganze verhält sich analog mit allen anderen möglichen Kombinationen. Die Frage kann damit als beantwortet angesehen werden!

Vielen Dank Dir trotzdem für deine Antwort !

Bezug
                        
Bezug
Ziegenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 15.04.2010
Autor: mathfunnel

Hallo eXeQteR,

jetzt scheinst Du auch nicht mehr [mm] $P(A|G_B) [/mm] = [mm] \frac{1}{2}$ [/mm] zu behaupten, so wie Du das in Deiner Originalfrage getan hast. Sehe ich das richtig?

Gruß mathfunnel


Bezug
                                
Bezug
Ziegenproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Do 15.04.2010
Autor: MontBlanc

Hallo,

ich bin ein Idiot :) Habe es falsch rum aufgeschrieben, entschuldige bitte !

Mea culpa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]