matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenZerlegen in Linearfaktoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ganzrationale Funktionen" - Zerlegen in Linearfaktoren
Zerlegen in Linearfaktoren < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Fr 29.06.2007
Autor: macio

Aufgabe
Zerlgen Sei [mm] x^3 [/mm] - [mm] 6x^2 [/mm] + 13x in Linearfaktoren

Hallo!
Wie gehe ich denn bei dieser Aufgabe vor? Soll man die pq Formel benutzen? Wenn ja, wie mache ich das? (Wir haben mit der pq- Formael kaum gearbeitet)

        
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Fr 29.06.2007
Autor: Kroni


> Zerlgen Sei [mm]x^3[/mm] - [mm]6x^2[/mm] + 13x in Linearfaktoren
>  Hallo!
>  Wie gehe ich denn bei dieser Aufgabe vor? Soll man die pq
> Formel benutzen? Wenn ja, wie mache ich das? (Wir haben mit
> der pq- Formael kaum gearbeitet)  

Hi,

zunächst würde ich ein x Ausklammern:

[mm] $x(x^2-6x+13)$ [/mm] so dass du schon einen Linearfaktor hast. Jetzt musst du nur noch die quad. Gleichung auflösen.

Wie ich aber sehe, hat diese quad. Gleichung keine reelle Lösung, so dass du dann wohl mit den Komplexen Zahlen arbeiten musst, um diese Gleichung in Linearfaktoren zu zerlegen.

LG

Kroni


Bezug
                
Bezug
Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Fr 29.06.2007
Autor: macio

Achso, also mit komplexen zahlen lösen! und wie mach ich das?

ich kann ja für x= a+jb einsetzten.

Bezug
                        
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Fr 29.06.2007
Autor: leduart

Hallo
Wenn du die qu. Gl. "normal" löst kommen doch einfach 2 konjugiert komplexe Zahlen  x1 und x2 raus, dann x*(x-x1)*(x-x2).
Gruss leduart

Bezug
                                
Bezug
Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Fr 29.06.2007
Autor: macio

Wie "normal" löst? Mit Polynomdivision?


Bezug
                                        
Bezug
Zerlegen in Linearfaktoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 Fr 29.06.2007
Autor: NewtonsLaw

Nee, du bekommst dann was in der Form
[mm] x_{1} [/mm] = 5+3j
[mm] x_{2} [/mm] = 5-3j
raus, wobei die Zahlen natürlich bei dir anders sind. War nur ein Beispiel!

Bezug
                                        
Bezug
Zerlegen in Linearfaktoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Fr 29.06.2007
Autor: SusaSch

Hallo
Würde mich auch mal interessieren :).

LG susi

Bezug
                                        
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Fr 29.06.2007
Autor: schachuzipus

Hallo macio,

der quadrat. Gleichung [mm] x^2-6x+13=0 [/mm] kannst du am einfachsten mit quadratischen Ergänzung beikommen:

[mm] x^2-6x+13=0\gdw (x-3)^2-9+13=0\gdw (x-3)^2=-4 [/mm]

[mm] \gdw (x-3)^2=i^2\cdot4 \mid\sqrt{} [/mm]

[mm] \Rightarrow x-3=\pm [/mm] 2i

[mm] \Rightarrow x=3\pm [/mm] 2i

LG

schachuzipus

Bezug
                                                
Bezug
Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Fr 29.06.2007
Autor: macio

hast du das in Linearfaktoren zerlegt? Denn ich bin mir nicht so sicher wie du jetzt drauf gekommen bist

Bezug
                                                        
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Fr 29.06.2007
Autor: schachuzipus

Hi,

[mm] x_1=3+2i [/mm] und [mm] x_2=3-2i [/mm] sind die NST von [mm] x^2-6x+13. [/mm]

also kannste schreiben [mm] x^2-6x+13=(x-3-2i)(x-3+2i) [/mm]

Dann hast du also insgesamt für dein Ausgangspolynom die lineare Zerlegung.....


Gruß

schachuzipus

Bezug
        
Bezug
Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 29.06.2007
Autor: macio

Hallo, ich komme hier leider nicht weiter, könnte mir jemand vll. erklätern wie man das in Linearfaktoren zerlegen soll?

Bezug
                
Bezug
Zerlegen in Linearfaktoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Fr 29.06.2007
Autor: Bastiane

Hallo macio!

> Hallo, ich komme hier leider nicht weiter, könnte mir
> jemand vll. erklätern wie man das in Linearfaktoren
> zerlegen soll?

Wo ist denn dein Problem? Es wurde dir doch bereits vorgerechnet. Frag doch bitte exakt an der Stelle nach (am besten den Text zitieren, mit dem Zitier-Button unter dem Eingabefenster) und dann direkt zu einem Rechenschritt eine Frage stellen!

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Fr 29.06.2007
Autor: leduart

Hallo
ein Polynom mit den Nullstellen x1;x2;x3 kann man immer schreiben als :A*(x-x1)*(x-x2)*(x-x3) A war bei dir 1.
jetzt hattest du ja als erstes die reelle Nst x=0, dann blieb ein quadratisches Polynom übrig, das keine reellen Nullstellen mehr hat. deshalb musst du die komplexen suchen, entweder mit pq Formel oder quadratischer Ergänzung. dann hast du alle 3 möglichen Nullstellen und siehe oben, das Polynom in Linearfaktoren zerlegt.
Probiers zur Probe aus und multiplizier die Klammern wieder aus, dann hast du dein Ursprüngliches Polynom wieder.
Gruss leduart

Bezug
                        
Bezug
Zerlegen in Linearfaktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 03.07.2007
Autor: macio

Wenn ich das mit pq Formael ausrechne, also:
[mm] x^3-6x^2+13x=0 [/mm]
[mm] x(x^2-6x+13)=0 [/mm]
[mm] x_1=0 [/mm]

[mm] x^2-6x+13=0 [/mm]
[mm] x_2_3 [/mm] = [mm] \bruch{6}{2} \pm \wurzel{\bruch{36}{4}-14} [/mm]
[mm] x_2_3 [/mm] = [mm] \wurzel{-4} \Leftarrow [/mm] also nicht definiert

Was gehe ich dann vor?

Bezug
                                
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Di 03.07.2007
Autor: Kroni


> Wenn ich das mit pq Formael ausrechne, also:
>  [mm]x^3-6x^2+13x=0[/mm]
>  [mm]x(x^2-6x+13)=0[/mm]
>  [mm]x_1=0[/mm]
>  
> [mm]x^2-6x+13=0[/mm]
>  [mm]x_2_3[/mm] = [mm]\bruch{6}{2} \pm \wurzel{\bruch{36}{4}-14}[/mm]
>  [mm]x_2_3[/mm]
> = [mm]\wurzel{-4} \Leftarrow[/mm] also nicht definiert
>  
> Was gehe ich dann vor?

Hi,

zunächst eine Sache:

Wenn du die Lösung in [mm] $\IR$ [/mm] suchst, so darfst du gar nicht erst die Wurzel ziehen, und dann sagen: Ist nicht definiert.
Du musst schon bei [mm] $x^2=-4$ [/mm] sagen: Eine Zahl aus [mm] $\IR$ [/mm] zum Quadrat kann niemals eine negative Zahl ergeben, sprich: [mm] $\IL=\{\}$! [/mm]

Ansonsten solltest du die Lösungen in der Menge der Komplexen Zahlen suchen:

[mm] $\sqrt{-4}=\sqrt{4}\cdot\sqrt{-1}$ [/mm]

Jetzt muss man nur noch wissen, dass [mm] $i^2=-1 \gdw i=\sqrt{-1}$ [/mm]

Und man hat die Lösung:

[mm] $\sqrt{-4}=2i$ [/mm]


Bezug
                                        
Bezug
Zerlegen in Linearfaktoren: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:14 Di 03.07.2007
Autor: macio

Ja, Ok, aber was ist dann der Realteil??

Bezug
                                                
Bezug
Zerlegen in Linearfaktoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Di 03.07.2007
Autor: macio

SRY doofe Frage!! natürlich muss er 3 sein!!

Bezug
                                                
Bezug
Zerlegen in Linearfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 03.07.2007
Autor: Bastiane

Hallo macio!

> Ja, Ok, aber was ist dann der Realteil??

Ich weiß zwar nicht so ganz, wie du auf [mm] \wurzel{-4} [/mm] kommst, habe aber auch nicht die ganze Diskussion nochmal gelesen. Aber [mm] \wurzel{-4}=2i [/mm] - da ist der Realteil =0, falls du das meinst.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]