matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraZerfällungskörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Zerfällungskörper
Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 18.09.2006
Autor: bubble

Aufgabe
Gegeben: f = [mm] X^{6} [/mm] - 1
Gesucht:
Ist f irreduzibel?
Wie lautet der Zerfällungskörper?
Wie gross ist der Körpergrad?
Wie

Hallo zusammen

Ist f irreduzibel?
Ja, denn [mm] X^{6} [/mm] - 1 : (X-1) = [mm] X^{5}+X^{4}+X^{3}+X^{2}+x+1 [/mm]

Zerfällungskörper: [mm] Q(\wurzel[6]{1}) [/mm]

[mm] Q(\wurzel[6]{1}) [/mm] = {a [mm] +\wurzel[6]{1}b; [/mm] a,b [mm] \in [/mm] Q(X)}
Körpererweiterungsgrad = 2

Stimmen diese Antworten?

        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Di 19.09.2006
Autor: felixf

Hallo bubble!

> Gegeben: f = [mm]X^{6}[/mm] - 1
>  Gesucht:
> Ist f irreduzibel?
>  Wie lautet der Zerfällungskörper?
> Wie gross ist der Körpergrad?
>  Wie
>
> Hallo zusammen
>  
> Ist f irreduzibel?
> Ja, denn [mm]X^{6}[/mm] - 1 : (X-1) = [mm]X^{5}+X^{4}+X^{3}+X^{2}+x+1[/mm]

Also wenn du [mm] $x^6 [/mm] - 1$ durch ein Polynom vom Grad 1 teilen kannst, ohne dass ein Rest uebrig bleibt, dann ist [mm] $x^6 [/mm] - 1$ reduzibel und somit nicht irreduzibel!

> Zerfällungskörper: [mm]Q(\wurzel[6]{1})[/mm]

6te Wurzeln von 1 gibt es einige. Aber nicht jede tuts hier! (Z.B. ist 1 auch eine solche Wurzel, aber [mm] $\IQ[1] [/mm] = [mm] \IQ$ [/mm] ist sicher nicht der Zerfaellungskoerper!)

Gib doch mal eine primitive 6te Einheitswurzel in [mm] $\IC$ [/mm] an.

> [mm]Q(\wurzel[6]{1})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {a [mm]+\wurzel[6]{1}b;[/mm] a,b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Q(X)}

Das gilt sicher nicht. Wie willst du etwa $\sqrt[6]{1}^2$ so darstellen?

>  Körpererweiterungsgrad = 2

Falsch.

> Stimmen diese Antworten?

Leider nein...

LG Felix


Bezug
                
Bezug
Zerfällungskörper: Vorsicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:53 Di 19.09.2006
Autor: statler

Guten Morgen Felix, guten Morgen bubble!

> >  Körpererweiterungsgrad = 2

>  
> Falsch.

Es ist doch [mm] X^{6} [/mm] - 1 = [mm] (X+1)*(X-1)*(X^{2} [/mm] + X + [mm] 1)*(X^{2} [/mm] - X + 1),
und der letzte Faktor gibt mir die beiden primitiven 6. Einheitswurzeln.

Gruß aus Hamburg-Harburg
Dieter


Bezug
                        
Bezug
Zerfällungskörper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Di 19.09.2006
Autor: felixf

Guten Morgen Dieter,

> > >  Körpererweiterungsgrad = 2

>  >  
> > Falsch.
>  
> Es ist doch [mm]X^{6}[/mm] - 1 = [mm](X+1)*(X-1)*(X^{2}[/mm] + X + [mm]1)*(X^{2}[/mm]
> - X + 1),
>  und der letzte Faktor gibt mir die beiden primitiven 6.
> Einheitswurzeln.

Stimmt, da hast du recht! Hab irgendwie nicht mehr dran gedacht dass die 2. Einheitswurzeln ja schon in [mm] $\IZ$ [/mm] liegen :-) War halt zu spaet in der Nacht...

LG Felix


Bezug
                                
Bezug
Zerfällungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 19.09.2006
Autor: bubble

Dann ist der Zerfällungskörper [mm] Q(e^{\bruch{2i\pi}{6}})? [/mm]
D.h. [mm] Q(e^{\bruch{2i\pi}{6}})= [/mm] {a + [mm] e^{\bruch{2i\pi}{6}} [/mm] b +  [mm] e^{\bruch{4i\pi}{6}} [/mm] c + [mm] e^{\bruch{4i\pi}{6}} [/mm] d +  [mm] e^{\bruch{8i\pi}{6}} [/mm] e + [mm] e^{\bruch{10i\pi}{6}} [/mm] f ; a, b, c, d, e, f [mm] \in [/mm] Q(X)}

Ist dann der Körpererweiterungsgrad 6?

Bezug
                                        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 07:14 Mi 20.09.2006
Autor: statler

Hallo bubble!

> Dann ist der Zerfällungskörper [mm]Q(e^{\bruch{2i\pi}{6}})?[/mm]

Ja, oder z. B. auch [mm] \IQ(\wurzel{-3}) [/mm]

> D.h. [mm]Q(e^{\bruch{2i\pi}{6}})=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{a + [mm]e^{\bruch{2i\pi}{6}}[/mm] b +

>  [mm]e^{\bruch{4i\pi}{6}}[/mm] c + [mm]e^{\bruch{4i\pi}{6}}[/mm] d +  
> [mm]e^{\bruch{8i\pi}{6}}[/mm] e + [mm]e^{\bruch{10i\pi}{6}}[/mm] f ; a, b, c,
> d, e, f [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Q(X)}

Diese Dinger sind nicht lin. unabhängig!

> Ist dann der Körpererweiterungsgrad 6?

Deswegen ist der Erweiterungsgrad auch nicht 6, sondern 2.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]