matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraZerfällungskörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Zerfällungskörper
Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Sa 18.02.2006
Autor: cloe

Aufgabe
Gegeben sei das Polynom [mm] x^4+1 \in \IQ[x]. [/mm] Bestimme den dazugehörigen Zerfällungskörper

Hallo,

mein Ansatz:

das Polynom hat neben den Nullstellen [mm] \pm \wurzel[4]{1} [/mm] auch komplexe Nullstellen, die nicht in [mm] \IQ [/mm] enthalten sind.
Ich muss einen Körper bestimmen, der auch die komplexen Nullstellen enthält.
Leider weiß ich ab hier nun nicht merh weiter.

Kann mir da vielleicht jemand weiterhelfen.

Gruß cloe

        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Sa 18.02.2006
Autor: mathmetzsch

Hallo,

denke dir mal die Gauß'sche Zahlenebene. Dann siehst du die vier Nullstellen. Diese sind [mm] \bruch{\pm 1\pm i}{\wurzel{2}}. [/mm]

Den Zerfällungskörper erhälst du durch Adjunktion aller Nullstellen. Der kleinste körper ist anscheinend [mm] \IQ(i,\wurzel{2}). [/mm]

Ach so, es wäre auch noch zu zeigen, dass das Polynom irreduzibel ist. Das ist aber einfach. Setze x=x+1 und wende Eisenstein an!

Viele Grüße
Daniel


Bezug
                
Bezug
Zerfällungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 18.02.2006
Autor: cloe

Und wie würde es dann beim Polynom [mm] x^3+2\in\IQ [/mm] aussehen?

Das Polynom ist irreduzibel. (Zunächst substituieren mit x+1 und dann Eisenstein mit p=3)

Bezug
                        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 18.02.2006
Autor: mathmetzsch

Hallo,

nö das geht einfacher. Wähle p=2 und verwende Eisenstein. Dann geht die Argumentation analog. Welche Nullstellen gibt es denn?

Auf jeden Fall [mm] \wurzel[3]{-2}. [/mm] Dann noch irgendwas mit i...!

Der Zerfällungskörper ist dann sicherlich [mm] \IQ({\wurzel[3]{-2},i}) [/mm] oder?

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]