Zentrum, Untergr. von GL(3;Z2) < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | G sei die Untergruppe von [mm] GL(3;\mathbb{Z}_2), [/mm] die aus allen Matrizen der Form [mm] \pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 &1 } [/mm] mit a,b,c [mm] \in \mathbb{Z}_2 [/mm] besteht.
a) Zeigen Sie, dass G nicht abelsch ist und genau zwei Elemente der Ordnung 4 besitzt.
b) Berechnen Sie das Zentrum Z(G) von G, wobei Z(G) = [mm] \{a\in G | \forall g \in G: ag = ga\}.
[/mm]
c) Zeigen Sie, dass es zu jedem g [mm] \in [/mm] G, ordg=4 ein h [mm] \in [/mm] G mit ordh=2 und [mm] hgh=g^{-1} [/mm] gibt und dass sich jedes Element von G eindeutig in der Form [mm] g^i h^j [/mm] mit i [mm] \in \{0,1,2,3\} [/mm] und j [mm] \in \{0,1\} [/mm] schreiben lässt. |
Hallo,
also die a) habe ich glaube ich schon:
------------------
G ist abelsch, falls für alle g,h [mm] \in [/mm] G gilt gh=hg.
[mm] g:=\pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 &1 }, h:=\pmat{ 1 & d & e \\ 0 & 1 & f \\ 0 & 0 &1 } [/mm] (a,b,c,d,e,f [mm] \in \mathbb{Z}_2)
[/mm]
[mm] \Rightarrow [/mm] gh= [mm] \pmat{ 1 & a+d & b+cd+e \\ 0 & 1 & f+c \\ 0 & 0 &1 }
[/mm]
[mm] hg=\pmat{ 1 & d+a & e+fa+b \\ 0 & 1 & f+c \\ 0 & 0 &1 }
[/mm]
Also gilt gh=hg offensichtlich nur für den Fall, dass cd=fa ist. Folglich ist G nicht abelsch.
Den zweiten Teil von a) habe ich noch nicht gemacht, aber müsste doch einfach durch probieren gehen, oder? Also einfach alle Möglichkeiten für a,b,c einsetzen und die Potenzen der Matrizen ausrechnen und schauen für welche a,b,c sich bei der vierten Potenz die Einheitsmatrix ergibt, richtig?
Oder geht das weniger zeitintensiv?
-----------------
Und bei der b) weiß ich nun nicht recht, wie ich das Zentrum aufschreibe....eigentlich kann ich das ja aus der a) entnehmen, aber wie notiert man das? S0?:
[mm] Z(G)=\{\pmat{ 1 & d & e \\ 0 & 1 & f \\ 0 & 0 &1 } \in G | \forall \pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 &1 } \in G: cd=fa; a,b,c,d,e,f \in \mathbb{Z}_2\}
[/mm]
Nee, bestimmt nicht, sieht bescheuert aus
Danke schonmal für Antworten und Gruß
vom congo
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:56 Mo 19.07.2010 | Autor: | statler |
Hallo!
> G sei die Untergruppe von [mm]GL(3;\mathbb{Z}_2),[/mm] die aus allen
> Matrizen der Form [mm]\pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 &1 }[/mm]
> mit a,b,c [mm]\in \mathbb{Z}_2[/mm] besteht.
>
> a) Zeigen Sie, dass G nicht abelsch ist und genau zwei
> Elemente der Ordnung 4 besitzt.
>
> b) Berechnen Sie das Zentrum Z(G) von G, wobei Z(G) =
> [mm]\{a\in G | \forall g \in G: ag = ga\}.[/mm]
>
> c) Zeigen Sie, dass es zu jedem g [mm]\in[/mm] G, ordg=4 ein h [mm]\in[/mm] G
> mit ordh=2 und [mm]hgh=g^{-1}[/mm] gibt und dass sich jedes Element
> von G eindeutig in der Form [mm]g^i h^j[/mm] mit i [mm]\in \{0,1,2,3\}[/mm]
> und j [mm]\in \{0,1\}[/mm] schreiben lässt.
> also die a) habe ich glaube ich schon:
>
> ------------------
> G ist abelsch, falls für alle g,h [mm]\in[/mm] G gilt gh=hg.
>
> [mm]g:=\pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 &1 }, h:=\pmat{ 1 & d & e \\ 0 & 1 & f \\ 0 & 0 &1 }[/mm]
> (a,b,c,d,e,f [mm]\in \mathbb{Z}_2)[/mm]
>
> [mm]\Rightarrow[/mm] gh= [mm]\pmat{ 1 & a+d & b+cd+e \\ 0 & 1 & f+c \\ 0 & 0 &1 }[/mm]
>
> [mm]hg=\pmat{ 1 & d+a & e+fa+b \\ 0 & 1 & f+c \\ 0 & 0 &1 }[/mm]
>
> Also gilt gh=hg offensichtlich nur für den Fall, dass
> cd=fa ist. Folglich ist G nicht abelsch.
Da wäre es schon deutlich besser (genau genommen sogar zwingend), ein konkretes Gegenbeispiel anzuführen.
> Den zweiten Teil von a) habe ich noch nicht gemacht, aber
> müsste doch einfach durch probieren gehen, oder? Also
> einfach alle Möglichkeiten für a,b,c einsetzen und die
> Potenzen der Matrizen ausrechnen und schauen für welche
> a,b,c sich bei der vierten Potenz die Einheitsmatrix
> ergibt, richtig?
>
> Oder geht das weniger zeitintensiv?
Wie sieht denn gh aus, wenn g = h ist? Das darf noch nicht die Einheitsmatrix sein! Und wie sieht [mm] g^4 [/mm] aus? Denk daran, daß dein Körper char = 2 hat.
> -----------------
>
> Und bei der b) weiß ich nun nicht recht, wie ich das
> Zentrum aufschreibe....eigentlich kann ich das ja aus der
> a) entnehmen, aber wie notiert man das? S0?:
>
> [mm]Z(G)=\{\pmat{ 1 & d & e \\ 0 & 1 & f \\ 0 & 0 &1 } \in G | \forall \pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 &1 } \in G: cd=fa; a,b,c,d,e,f \in \mathbb{Z}_2\}[/mm]
>
> Nee, bestimmt nicht, sieht bescheuert aus
Das notiert man am besten, indem man das Zentum explizit hinschreibt. Welche Ordnung hat denn die Gruppe? Wie groß kann das Zentrum höchstens sein? Und die Vorarbeit hast du in a) schon geleistet.
Übrigens gibt es nur 2 nicht-abelsche Gruppen dieser Ordnung, welche von beiden ist es? Um deinen Forscherdrang mal anzuregen ...
Gruß aus HH-Harburg
Dieter
|
|
|
|