matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikZentripetalkraft, Globus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Zentripetalkraft, Globus
Zentripetalkraft, Globus < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentripetalkraft, Globus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 27.12.2016
Autor: taytm

Aufgabe
Kleine Max setzt sein Matchboxauto auf den höchsten Punkt eines Globus und lässt es herunter rollen. Das Matchboxauto rollt immer am gleichen Breitengrad vom Globus. Berechne diesen.


Hi,

das ist so eine Aufgabe, bei der ich keine Ahnung habe, was ich eigentlich so wirklich mache.

Kann man das so rechnen?

Das Auto fällt dann vom Globus, wenn die Zentripetalkraft kleiner als der Anteil von der Schwerkraft wird, der senkrecht auf den Globus wirkt.
Wenn jetzt [mm] $\alpha$ [/mm] der Winkel $a$ in der Skizze hier ist: http://imgur.com/BOmkX75

Dann ist der Anteil von der Schwerkraft [mm] $g_N [/mm] = g [mm] \sin \alpha$ [/mm]

Die Zentripetalkraft ist [mm] $a_Z [/mm] = [mm] \frac{v^2}{r}$, [/mm] $r$ Radius vom Globus

Jetzt muss ich wissen, wie schnell das Auto bei einer bestimmten Höhe ist. Kann ich das über Energieerhalt ausrechnen?

Also beim Winkel [mm] $\alpha$ [/mm] ist der Höhenunterschied zum Anfang [mm] $\Delta [/mm] h = r - [mm] \sin(\alpha) \cdot [/mm] r$, also [mm] $\frac{1}{2} [/mm] m [mm] v^2 [/mm] = [mm] E_\text{kin} [/mm] = [mm] \Delta E_\text{pot} [/mm] = mg [mm] \Delta [/mm] h$, was zu $v = [mm] \sqrt{2 gr (1 - sin(\alpha))}$ [/mm] führt.

Dann würde sich die unbannte Größe $r$ in [mm] $a_Z$ [/mm] rauskürzen und man könnte rechnen: [mm] $a_Z [/mm] = [mm] g_N$ [/mm] gdw [mm] $\frac{v^2}{r} [/mm] = g [mm] \sin(\alpha)$ [/mm] gdw $2g (1 - [mm] \sin(\alpha)) [/mm] = g [mm] \sin(\alpha)$ [/mm] gdw $2 - 2 [mm] \sin(\alpha) [/mm] = [mm] \sin(\alpha)$ [/mm] gdw $2 = 3 [mm] \sin(\alpha)$ [/mm] gdw [mm] $\alpha [/mm] = [mm] \arcsin(\frac{2}{3}) \approx 41.8^\circ$. [/mm]

Wäre das richtig gerechnet?

Vielen dank und freundliche Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zentripetalkraft, Globus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Di 27.12.2016
Autor: Event_Horizon

Hallo!

Ich kann an deiner Rechnung nichts falsches entdecken.  
Scherzeshalber könnte man sagen, daß ein Globus üblicherweise eine um 22,5° gekippte Achse hat, genau so, wie die Achse der Erde auch gekippt ist. Daher hebt das Auto eigentlich keinesfalls immer am gleichen Breitengrad ab, aber wir wissen ja, was in der Aufgabe eigentlich gefragt ist.

Eine Sache gibt es aber dennoch: Die Zentripetalkraft ist diejenige, die zum Kreisinneren zeigt, die Zentrifugalkraft zeigt davon weg.
Demnach erzeugt die Gravitation die Zentripetalkraft, die Geschwindigkeit die Zentrifugalkraft. Wenn letztere größer als erstere ist, hebt das Auto ab.



Bezug
                
Bezug
Zentripetalkraft, Globus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Fr 30.12.2016
Autor: taytm

Hey,

danke fürs Anschauen. Deine Anmerkung zur Zentripetal/fugalkraft ist hilfreich. :)

Dass der Globus eigentlich gekippt ist, war meine Schuld; in der Aufgabe steht sogar, dass die Achse senkrecht zum Erdboden stehe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]