matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenZeitvariant, Zeitinvariant
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Zeitvariant, Zeitinvariant
Zeitvariant, Zeitinvariant < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeitvariant, Zeitinvariant: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:51 Fr 24.07.2009
Autor: HendrikBuff

Hallo,

ich bräuchte mal eine Hilfe zu den Begriffen Zeitvariant bzw. Zeitinvariant.
Ich habe die Bewegungsgleichung eines Rotors und setze diese in einer Simulinksimulation um. Eine der Matrizen ist die Gyroskopiematrix, in der die Drehzahl des Rotors steht. Die anderen sind die üblichen Masse, Dämpfungs und Steifigkeitsmatrizen.

Meine Frage ist nun, wenn sich die Drehzahl im Laufe der Simulation ändert (und damit sich ja auch die Gyroskopiematrix ändert), ist das System dann Zeitvariant oder invarinat?
Beispiel, die ich gefunden habe zu diesem Thema fand ich nicht besonders eindeutig.
Die Frage ist wichtig, da von diesem Kriterium abhängt, ob ich eine modale Reduktion des Systems machen kann oder nicht. Oder habe ich das evtl falsch verstanden.

Bin für jeden Tip dankbar!

mfg

Hendrik



        
Bezug
Zeitvariant, Zeitinvariant: jeder Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Fr 24.07.2009
Autor: goldrush

Guck mal hier: http://www.uni-siegen.de/fb11/imr3/download/maschdyn/skript/maschdyn_kap3.pdf

(3.5.2) Bew.dgl ist ja vorhanden...
Zitat: Wenn die Systemmatrizen nach erfolgter Linearisierung mittels Referenzpunkt qr (z.B. der statischen Ruhelage unter Berücksichtigung der Gravitationskräfte) zeitunabhängig sind, nennt man das System zeit-invariant.

Dann mal los :)

Bezug
        
Bezug
Zeitvariant, Zeitinvariant: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 01.08.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]