matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenZeilenstufenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Zeilenstufenform
Zeilenstufenform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeilenstufenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Sa 01.12.2012
Autor: Duckx

Aufgabe
Bringen Sie die Matrix

[mm] $A=\pmat{0 & 1&2&-2&0&1\\5&1&2&3&4&0\\-1&1&1&-1&-1&1\\3&3&4&1&2&2}$ [/mm]
in eine reduzierte Zeilenstufenform
Geben Sie dann eine Lösung des Gleichungssystems $A*x=0$ an

also ich habe es mal probiert mit der reduzierten Zeilenstufenform

[mm] $A=\pmat{0 & 1&2&-2&0&1\\5&1&2&3&4&0\\-1&1&1&-1&-1&1\\3&3&4&1&2&2}$ [/mm]

[mm] $\to \pmat{-1&1&1&-1&-1&1\\0 & 1&2&-2&0&1\\5&1&2&3&4&0\\3&3&4&1&2&2}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\5&1&2&3&4&0\\3&3&4&1&2&2}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\0&6&7&-2&-1&5\\3&3&4&1&2&2}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\0&0&-5&10&-1&-1\\3&3&4&1&2&2}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\0&0&1&-2&1/5&1/5\\3&3&4&1&2&2}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\0&0&1&-2&1/5&1/5\\0&6&7&-2&-1&5}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\0&0&1&-2&1/5&1/5\\0&0&-5&10&-1&-1}$ [/mm]

[mm] $\to \pmat{1&-1&-1&1&1&-1\\0 & 1&2&-2&0&1\\0&0&1&-2&1/5&1/5\\0&0&0&0&0&0}$ [/mm]

Ist das so richtig? Ich kenne mich noch nicht wirklich mit Matrizen aus.

Bei der letzten Teilaufgabe habe ich allerdings probleme.
Wie rechne ich das jetzt am besten?


        
Bezug
Zeilenstufenform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Sa 01.12.2012
Autor: Steffi21

Hallo, bis hier alles perfekt gelöst, du suchst ja [mm] x_1 [/mm] bis [mm] x_6, [/mm] setze

[mm] x_6=p [/mm]

[mm] x_5=q [/mm]

[mm] x_4=r [/mm]

p, q, r sind frei wählbare Parameter, aus der 3. Zeile kannst du dann [mm] x_3 [/mm] bestimmen

Steffi

Bezug
                
Bezug
Zeilenstufenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Sa 01.12.2012
Autor: Duckx

Ok danke :)
Dann wäre:
[mm] $x_1=-r-\frac{4}{5}q+2\frac{1}{5}p$ [/mm]
[mm] $x_2=-2r+\frac{2}{5}q+1\frac{2}{5}p$ [/mm]
[mm] $x_3=2r-\frac{1}{5} q-\frac{1}{5}p$ [/mm]

und ist die reduzierte Zeilenstufenform nur dadurch gekenzeichnet, dass die erste Zahl einer Zeile 1 ist?

Bezug
                        
Bezug
Zeilenstufenform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Sa 01.12.2012
Autor: Steffi21

Hallo, ganz stimmen deine Lösungen nicht

[mm] x_1=-r-\frac{4}{5}q+\frac{1}{5}p [/mm]

[mm] x_2=-2r+\frac{2}{5}q-\frac{3}{5}p [/mm]

[mm] x_3=2r-\frac{1}{5} q-\frac{1}{5}p [/mm]

"und ist die reduzierte Zeilenstufenform nur dadurch gekenzeichnet, dass die erste Zahl einer Zeile 1 ist?"

Ja

Steffi



Bezug
                                
Bezug
Zeilenstufenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Sa 01.12.2012
Autor: Duckx

Stimmt habe mich mit den Vorzeichen vertan :)
Vielen Dank für die schnelle Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]