matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenZeilenstufenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abbildungen und Matrizen" - Zeilenstufenform
Zeilenstufenform < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeilenstufenform: umformen
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 16.06.2011
Autor: mathetuV

Kann mir bitte jemand schritt für schritt an meinem beispieln erklären, wie ich die lösung finde:

[mm] \pmat{ 0 & 4 & 2 & 1\\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -2 } [/mm]

vielen dank im vorraus

MfG

        
Bezug
Zeilenstufenform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Do 16.06.2011
Autor: wieschoo

Wo ist die Aufgabe? Reduzierte zeilenstufenform?

Du kannst -2.Zeile auf die erste Zeile addieren und dann addierst z.B. die 4. Zeile auf die erste.
Normierst du noch die 4. Zeile auf 1, dann kannst du auch die restlichen Einträge in der 2 und 3 Zeile eliminieren.


oder du rechnest nach dem stupiden Algorithmus
http://werkzeuge.wieschoo.com/rref.php



Bezug
                
Bezug
Zeilenstufenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Do 16.06.2011
Autor: mathetuV

ich brauche dass weil ich  die Haupträume beszimmern muss, sorry ich damit mit diesem banalen umformen durcheinnander

wie sind deine end matrix aus?

dankeschön

Bezug
                        
Bezug
Zeilenstufenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Do 16.06.2011
Autor: wieschoo

Und nun bringen wir die Matrix auf reduzierte Zeilenstufenform:
[mm]\left( \begin {array}{cccc}0 & 4 & 2 & 1 \\0 & 0 & 2 & -1 \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 1 auf 1 normieren, indem wir durch [mm]4[/mm] dividieren.
[mm]\left( \begin {array}{cccc}0 & 1 & \tfrac{1}{2} & \tfrac{1}{4} \\0 & 0 & 2 & -1 \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 2 auf 1 normieren, indem wir durch [mm]2[/mm] dividieren.
[mm]\left( \begin {array}{cccc}0 & 1 & \tfrac{1}{2} & \tfrac{1}{4} \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 1 verändern, indem wir ein Vielfaches der Zeile 2 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & \tfrac{1}{2} \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 3 auf 1 normieren, indem wir durch [mm]-3[/mm] dividieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & \tfrac{1}{2} \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & 1 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 1 verändern, indem wir ein Vielfaches der Zeile 3 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & \tfrac{-1}{2} \\0 & 0 & 0 & 1 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 2 verändern, indem wir ein Vielfaches der Zeile 3 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

Die aktuelle Zeile 4 verändern, indem wir ein Vielfaches der Zeile 3 hinzuaddieren.
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & 0 \\\end {array} \right) [/mm]
[mm]\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & 0 \\\end {array} \right) [/mm]

Die reduzierte Zeilenstufenform der Matrix:
[mm]A=\left( \begin {array}{cccc}0 & 4 & 2 & 1 \\0 & 0 & 2 & -1 \\0 & 0 & 0 & -3 \\0 & 0 & 0 & -2 \\\end {array} \right) [/mm]

lautet:
[mm]\tilde{A}=\left( \begin {array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & 0 \\\end {array} \right) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]