matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeZeigen des Unterraumes/Basis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Zeigen des Unterraumes/Basis
Zeigen des Unterraumes/Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen des Unterraumes/Basis: Aufgabe 10/ 11
Status: (Frage) beantwortet Status 
Datum: 11:36 Di 13.05.2008
Autor: tricki

Aufgabe
Aufgabe 10

Zeigen Sie, das
W =  {(x, x + y, x + [mm] y)^{T}} [/mm]  /x, y [mm] \in\IR [/mm]
ein Unterraum des [mm] \IR [/mm] 3 und das {(1; 1; [mm] 1)^{T} [/mm] ; (1; 0; [mm] 0)^{T}} [/mm] eine Basis von W ist.
Welche Dimension hat W ?

Aufgabe 11

Geben Sie eine Basis und die Dimension folgender Unterräume
des [mm] \IR [/mm] 2 bzw. [mm] \IR [/mm] 4 an:
W1 = [mm] \alpha{(1; 5) ; (5; 1) ; (1; 4) ; (4; 1)} [/mm]
W2 = [mm] \alpha{(1; 1; 1; 1) ; (0; 1; 2; 3) ; (0; 0; -1; -1) ; (0; 1; 1; 2)} [/mm]

Bei Aufgabe 10 habe zwar den Unteraum [mm] \IR [/mm] 3 zeigen können, jedoch weiß ich nicht, wie ich zeigen soll, das (1, 1, 1) und (1, 0, 0) eine Basis von W bilden?

Bei der 11. Aufgabe sehe ich nicht durch, ein Ansatz oder ne Rechenhilfe wäre schön.

        
Bezug
Zeigen des Unterraumes/Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Di 13.05.2008
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Aufgabe 10
>
> Zeigen Sie, das
>  W =  {(x, x + y, x + [mm]y)^{T}}[/mm]  /x, y [mm]\in\IR[/mm]
>  ein Unterraum des [mm]\IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

3 und das {(1; 1; [mm]1)^{T}[/mm] ; (1; 0;

> [mm]0)^{T}}[/mm] eine Basis von W ist.
>  Welche Dimension hat W ?
>  
> Aufgabe 11
>  
> Geben Sie eine Basis und die Dimension folgender
> Unterräume
>  des [mm]\IR[/mm] 2 bzw. [mm]\IR[/mm] 4 an:
>  W1 = [mm]\alpha{(1; 5) ; (5; 1) ; (1; 4) ; (4; 1)}[/mm]
>  W2 =
> [mm]\alpha{(1; 1; 1; 1) ; (0; 1; 2; 3) ; (0; 0; -1; -1) ; (0; 1; 1; 2)}[/mm]
>  
> Bei Aufgabe 10 habe zwar den Unteraum [mm]\IR[/mm] 3 zeigen können,
> jedoch weiß ich nicht, wie ich zeigen soll, das (1, 1, 1)
> und (1, 0, 0) eine Basis von W bilden?

Hallo,

zeig', daß die beiden linear unabhängig sind und daß Du jeden Vektor der Gestalt (x, x + y, x + [mm]y)^{T}}[/mm]  als Linearkombination der beiden schreiben kannst (Erzeugendensystem).

>  
> Bei der 11. Aufgabe sehe ich nicht durch, ein Ansatz oder
> ne Rechenhilfe wäre schön.

Zunächst mal kann man sich klar machen, daß die Dimension der Unterräume [mm] \le [/mm] der Dimension des (Ober-)Raumes sein muß.

Da der [mm] \IR^2 [/mm] die Dimension 2 hat, kann [mm] W_1 [/mm] nur die Dim. 1 oder 2 haben. Wenn Du zwei linear unabhängige Vektoren im Erzeugendensystem findest, hast Du bereits die Basis des Unterraumes gefunden.

Generell bekommt man diese Aufgaben am besten hin, wenn man die Vektoren als Spalten in eine Matrix steckt, welche man auf ZSF bringt. Der Rang ist die gesuchte Dimension, und man kann auch eine Basis ablesen, wie das geht, könnte ich Dir zeigen, wenn die Matrix in ZSF dasteht.

[Alternativ - falls Ihr das hattet:

Vektoren als Zeilen in eine Matrix, auf Zeilenstufenform bringen. Der Rang ist die Dimension, die verbleibenden Zeilen liefern eine Basis.]

Gruß v. Angela



Bezug
                
Bezug
Zeigen des Unterraumes/Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Di 13.05.2008
Autor: tricki

Bei 11. bin ich mit der Zeilenform nicht auf wünschenswerte Ergebnise gekommen, bzw. was ist unter der Erzeugendform zu verstehen?

Bezug
                        
Bezug
Zeigen des Unterraumes/Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Di 13.05.2008
Autor: angela.h.b.


> Bei 11. bin ich mit der Zeilenform nicht auf wünschenswerte
> Ergebnise gekommen,

Hallo,

zeig mal, was Du gemacht hast.


> bzw. was ist unter der Erzeugendform zu
> verstehen?

Wer spricht von "Erzeugendform"? Ich kenne ein Erzeugendensystem, aber nicht den besagten Ausdruck.
Vielleicht ist damit die Matrix gemeint, die die erzeugenden Vektoren in den Zeilen enthält.

Gruß v. Angela


Bezug
                                
Bezug
Zeigen des Unterraumes/Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Di 13.05.2008
Autor: tricki

Nein, ich meinte scho das was du meintest. Bei W2, mit der Zeilenform konnte ich eine lineare Unabhängigkeit zeigen, jedoch bei W1, komme ich auf keine richtige Lösung.

Bezug
        
Bezug
Zeigen des Unterraumes/Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Di 13.05.2008
Autor: tricki

Könntest du mir nicht eventuell mal einen Rechenanfang übermitteln oder so?

Bezug
                
Bezug
Zeigen des Unterraumes/Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Di 13.05.2008
Autor: angela.h.b.


> Könntest du mir nicht eventuell mal einen Rechenanfang
> übermitteln oder so?

Hallo,

ich würde - wenn ich das Ergebnis wie im Einganspost beschrieben nicht sofort sehen würde - die Vektoren als Spalten in eine Matrix stecken:

[mm] \pmat{ 1 & 5 &1 & 4 \\ 5 & 1 &4 & 1}, [/mm]

diese auf Zeilestufenform bringen:

[mm] \pmat{ \red{1} & 5 &1 & 4 \\ 0 & \red{24} &1 & 19}. [/mm]

Nun sehe ich, daß bei ZSF 2 Zeilen bleiben. Also ist die Dimension des aufgespannten Raumes =2.

Die führenden Elemente der Zeilen (rot) stehen in der 1. und 2.Spalte.

Also weiß ich, daß ganz sicher der 1. und 2. der in die Matrix gesteckten Vektoren zusammen eine Basis bilden, also ist

[mm] (\vektor{1 \\ 5}, \vektor{5 \\ 1}) [/mm] eine basis des aufgespannten Raumes - wie viele andere Basen auch.
Da der aufgespannte Raum ein Unterraum der Dimension 2 des zweidimensionalen Raumes [mm] \IR^2 [/mm] ist, ist er [mm] =\IR^2. [/mm] Das bedeutet, daß man als Basis natürlich auch die Standardbasis des [mm] \IR^2 [/mm] nehmen kann.


Die andere von mir geschilderte Möglichkeit:

Stecke die Vektoren als Zeilen in eine Matrix und bringe sie auf Zeilenstufenform


[mm] \pmat{ 1 & 5 \\5 & 1 \\ 1 & 4 \\4 & 1} [/mm] --> [mm] \pmat{ 1 & 5 \\0 & 24 \\ 0 & 1 \\0 & 19} -->\pmat{ 1 & 5 \\0 & 1 \\ 0 & 1 \\0 & 1} -->\pmat{ 1 & 5 \\0 & 1 \\ 0 & 0 \\0 & 0} [/mm]

Ich lese ab: [mm] (\vektor{1 \\ 5}, \vektor{0 \\ 1}) [/mm] ist eine basis des aufgespannten Raumes, sein Dim. =2.

Gruß v. Angela










Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]