Zeigen, dass es eine Norm ist. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:36 Mo 16.04.2012 | Autor: | ggT |
Aufgabe | Wir definieren auf dem [mm] \IR² [/mm] ||(x,y)|| = |x| + |y - x|. Zeige, dass es sich hier um eine Norm handelt. |
Grundsätzlich habe ich erst einmal ein Problem mit dem Ausdruck ||(x,y)||. Ich weiß nicht so ganz wie ich das interpretieren soll. Normal werden die Normen ja in der Form ||v|| bzw. ||v+w|| oder wie auch immer geschrieben.
Bei metrischen Räumen schreibt man d(x,y) etc. , aber hier ist das ja quasi eine Kombination. Heißt das, dass der Vektor v quasi in x- und y-Koordinaten aufgesplittet ist?
Der nächste Schritt wäre dann ja irgendwie die Bedingungen zu prüfen:
1) ||(x,y)|| [mm] \ge [/mm] 0
2) ||(x,y)|| = 0 nur dann, wenn (x,y) = 0 ... aber wie zeig ich das?
3) [mm] ||\alpha(x,y)|| [/mm] = [mm] |\alpha| [/mm] ||(x,y)|| ... auch nicht wirklich eine Idee
und als letztes dann noch die Dreiecksungleichung, aber da
weiß ich dann überhaupt nicht mehr, hab ich dann noch ein paar (a,b) oder wie läuft das dann
Ist der Ansatz überhaupt richtig, weiß gar nicht, ob das Sinn macht.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Wir definieren auf dem [mm]\IR²[/mm] ||(x,y)|| = |x| + |y - x|.
> Zeige, dass es sich hier um eine Norm handelt.
> Grundsätzlich habe ich erst einmal ein Problem mit dem
> Ausdruck ||(x,y)||. Ich weiß nicht so ganz wie ich das
> interpretieren soll.
Es ist der Abstand zweier Zahlen, wobei du sehen musst, was es für ein Abstand ist. Also ob es der "Abstand" unserer Anschauung ist. Mach dir das am besten mal anhand einfacher Normen bewusst.
> Der nächste Schritt wäre dann ja irgendwie die
> Bedingungen zu prüfen:
> 1) ||(x,y)|| [mm]\ge[/mm] 0
> 2) ||(x,y)|| = 0 nur dann, wenn (x,y) = 0 ... aber wie
> zeig ich das?
> 3) [mm]||\alpha(x,y)||[/mm] = [mm]|\alpha|[/mm] ||(x,y)|| ... auch nicht
> wirklich eine Idee
> und als letztes dann noch die Dreiecksungleichung, aber da
> weiß ich dann überhaupt nicht mehr, hab ich dann noch ein
> paar (a,b) oder wie läuft das dann
Richtig. Einfach die Eigenschaften nachweisen.
1) positive Definitheit. Ist denn die Norm immer positiv? Also einfach schauen. Das ist meist ziemlich einfach.
2) Du hast den richtigen Ansatz. Setz doch mal (0,0) in die Norm ein. Was kommt raus? Was ist, wenn du die Gegenrichtung untersuchst?
3) Auch hier einfach einsetzen: [mm]||a(x,y)||=||(ax,ay)||= ... =|a| ||(x,y)||[/mm]
4) Dreiecksungleichung: Weise nach: [mm] ||(x_1,y_1)+(x_2,y_2)||\le||(x_1,y_1)||+||(x_2,y_2)||
[/mm]
(Hier stand zuerst etwas anderes, war geistig schon kurz abwesend. Marcel hat aber sowieso eine umfassendere Antwort.)
|
|
|
|
|
Status: |
(Korrektur) kleiner Fehler | Datum: | 01:39 Mo 16.04.2012 | Autor: | Marcel |
Hallo,
> 4) Dreiecksungleichung: Weise nach:
> [mm]||(x,y)||\le||(x,z)||+||(z,y)||[/mm]
DAS soll er NICHT nachweisen (!!), sondern:
[mm] $$\|x+y\| \le \|x\|+\|y\|$$
[/mm]
für (alle) $x,y [mm] \in \IR^2\,.$
[/mm]
Mit [mm] $x=(x_1,x_2)$ [/mm] und [mm] $y=(y_1,y_2)$ [/mm] beides [mm] $\IR^2$-Elemente [/mm] also
[mm] $$\|(x_1,x_2)+(y_1,y_2)\| \le \|(x_1,x_2)\|+\|(y_1,y_2)\|\,.$$
[/mm]
Ausgeschrieben lautet die Behauptung also (nachdem man [mm] $x+y\,$ [/mm] berechnet hat)
[mm] $$|x_1+y_1|+|(x_2+y_2)-(x_1+y_1)| \le |x_1|+|x_2-x_1|+|y_1|+|y_2-y_1|\,.$$
[/mm]
Und da sieht man schon, dass es schön ist, etwa in [mm] $(\IR,|.|)$ [/mm] zu wissen, dass
[mm] $$|x_1+y_1| \le |x_1|+|y_1|$$
[/mm]
gilt...
Gruß,
Marcel
|
|
|
|
|
Status: |
(Korrektur) richtig (detailiert geprüft) | Datum: | 01:44 Mo 16.04.2012 | Autor: | Richie1401 |
Ich hatte es soeben auch gemerkt und korrigiert. Ich bin blöderweise kurz in die Metrik gerutscht. Offensichtlich doch zu spät für mein Hirn.
Demnach: Gute Nacht.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:34 Mo 16.04.2012 | Autor: | Marcel |
Hallo,
> Wir definieren auf dem [mm]\IR²[/mm] ||(x,y)|| = |x| + |y - x|.
> Zeige, dass es sich hier um eine Norm handelt.
> Grundsätzlich habe ich erst einmal ein Problem mit dem
> Ausdruck ||(x,y)||. Ich weiß nicht so ganz wie ich das
> interpretieren soll. Normal werden die Normen ja in der
> Form ||v|| bzw. ||v+w|| oder wie auch immer geschrieben.
> Bei metrischen Räumen schreibt man d(x,y) etc. , aber
> hier ist das ja quasi eine Kombination. Heißt das, dass
> der Vektor v quasi in x- und y-Koordinaten aufgesplittet
> ist?
so kann man das interpretieren: Die Norm eines [mm] $\IR^2$-Vektors [/mm] berechnet sich anhand seiner Komponenten. Das ist aber nix neues: In der euklidischen Standardnorm, ich schreibe jetzt mal [mm] $e\,$ [/mm] dafür, ist doch [mm] $e((x,y))=\sqrt{x^2+y^2}\,.$ [/mm] Da quadrierst Du die Komponenten, addierst die Quadrate und ziehst am Ende noch die Wurzel!
Bei Dir ist halt etwa bspw. [mm] $\|(3,-7)\|=|3|+|-7-3|\,.$ [/mm] Anders gesagt: Hier berechnet sich die Norm eines [mm] $\IR^2$-Vektors, [/mm] indem man den Betrag der ersten Komponente zum Abstand der beiden Komponenten als [mm] $\IR$-Elemente [/mm] dazuaddiert.
> Der nächste Schritt wäre dann ja irgendwie die
> Bedingungen zu prüfen:
> 1) ||(x,y)|| [mm]\ge[/mm] 0
> 2) ||(x,y)|| = 0 nur dann, wenn (x,y) = 0 ... aber wie
> zeig ich das?
Wie Richie schon sagte, ist die Behauptung [mm] $\|(0,0)\|=0$ [/mm] trivial, denn es ist [mm] $\|(0,0)\|=|0|+|0-0|=0\,.$
[/mm]
Interessanter ist die andere Richtung (bei der Norm-Bedingung steht eine GENAU-DANN-WENN-AUSSAGE!):
Sei $(x,y) [mm] \in \IR^2$ [/mm] mit [mm] $\|(x,y)\|=0\,.$ [/mm] Dann ist [mm] $|x|+|y-x|=0\,.$ [/mm] Wäre $|x| > [mm] 0\,,$ [/mm] so wäre aber $x [mm] \in \IR \setminus \{0\}\,.$ [/mm] Also muss dann [mm] $|x|=0\,$ [/mm] und damit [mm] $x=0\,$ [/mm] sein. Wieso folgt nun auch [mm] $y=0\,$?
[/mm]
> 3) [mm]||\alpha(x,y)||[/mm] = [mm]|\alpha|[/mm] ||(x,y)|| ... auch nicht
> wirklich eine Idee
Es ist doch [mm] $\alpha(x,y)=(\alpha x,\alpha y)\,.$ [/mm] Daher ist [mm] $\|\alpha(x,y)\|=\|(\alpha x,\alpha y)\|\,.$ [/mm] Per Definitionem ist das [mm] $=|\alpha x|+|\alpha y-\alpha x|\,.$ [/mm] Jetzt rechnest Du doch nur noch innerhalb der reellen Zahlen - da kennst Du Rechengesetze (Distributivgesetz; [mm] $|r*s|=|r|*|s|\,$ [/mm] etc.)
> und als letztes dann noch die Dreiecksungleichung, aber da
> weiß ich dann überhaupt nicht mehr, hab ich dann noch ein
> paar (a,b) oder wie läuft das dann
Dort ist zu zeigen:
Sind [mm] $(x_1,x_2),\;(y_1,y_2) \in \IR^2\,,$ [/mm] so folgt
[mm] $$\|(x_1,x_2)+(y_1,y_2)\| \le \|(x_1,x_2)\|+\|(y_1,y_2)\|\,.$$
[/mm]
Links kannst Du wieder [mm] $(x_1,x_2)+(y_1,y_2)=(x_1+y_1,x_2+y_2)$ [/mm] ausnutzen und dann die Definition der "Norm" (das ist ja noch zu zeigen, dass wir die so nennen dürfen, daher in Anführungszeichen) [mm] $\|.\|$ [/mm] hier verwenden. Und natürlich kann es sehr hilfreich sein, dass man in [mm] $(\IR,|.|)$ [/mm] weiß, dass $|r+s| [mm] \le [/mm] |r|+|s|$ gilt...
(Anders gesagt: [mm] $(\IR,|.|)$ [/mm] ist ein normierter Raum!)
Gruß,
Marcel
|
|
|
|