matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesZeigen, dass Formel gilt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Zeigen, dass Formel gilt
Zeigen, dass Formel gilt < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, dass Formel gilt: 2 Formel
Status: (Frage) beantwortet Status 
Datum: 09:41 Di 12.12.2017
Autor: sancho1980

Hallo,

diesmal hab ich gleich 2 Problemchen, die aber in die gleiche Kategorie fallen.
Kann mir einer den Lösungsweg erklären, wie ich zeigen kann, dass für alle b, x, y [mm] \in \IR [/mm] mit 0 < x < y und b < 0 gilt:

1) [mm] \bruch{x}{b + x} [/mm] < [mm] \bruch{y}{b + y} [/mm]

Ich vermute, dass man irgendwie starten muss mit

x < y [mm] \Rightarrow [/mm]
[mm] \bruch{1}{x} [/mm] > [mm] \bruch{1}{y} [/mm]
[mm] \bruch{y}{b + x} [/mm] > [mm] \bruch{y}{b + y} [/mm]
[mm] \bruch{x}{b + y} [/mm] < [mm] \bruch{x}{b + x} [/mm]
[mm] \bruch{x}{y} [/mm] < [mm] \bruch{y}{x} [/mm]
b + x  < b + y

Aber irgendwie weiß ich nicht, was ich daraus weiterhin schlussfolgern kann.

2) [mm] \bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n} [/mm]


Danke und Gruß
Martin

        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Di 12.12.2017
Autor: fred97


> Hallo,
>  
> diesmal hab ich gleich 2 Problemchen, die aber in die
> gleiche Kategorie fallen.
>  Kann mir einer den Lösungsweg erklären, wie ich zeigen
> kann, dass für alle b, x, y [mm]\in \IR[/mm] mit 0 < x < y und b <
> 0 gilt:
>  
> 1) [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm]

Für b<0 ist dies i.a. falsch ! Beispiel: b=-1, x=2,y=3.

Ist b>0, so stimmts:

[mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm] \gdw [/mm] bx+xy <by+xy [mm] \gdw [/mm] bx<by.



>  
> Ich vermute, dass man irgendwie starten muss mit
>  
> x < y [mm]\Rightarrow[/mm]
>  [mm]\bruch{1}{x}[/mm] > [mm]\bruch{1}{y}[/mm]

>  [mm]\bruch{y}{b + x}[/mm] > [mm]\bruch{y}{b + y}[/mm]

>  [mm]\bruch{x}{b + y}[/mm] <
> [mm]\bruch{x}{b + x}[/mm]
>  [mm]\bruch{x}{y}[/mm] < [mm]\bruch{y}{x}[/mm]
>  b + x  < b + y
>  
> Aber irgendwie weiß ich nicht, was ich daraus weiterhin
> schlussfolgern kann.
>  
> 2) [mm]\bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n}[/mm]

Was ist hier über a und b vorausgesetzt ?


>  
> Danke und Gruß
>  Martin


Bezug
                
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Di 12.12.2017
Autor: sancho1980

Sorry, bei 1) ist mir ein Tippfehler unterlaufen. Es muss heißen b > 0
Bei 2 hab ich die Annahmen vergessen:

a, b, n [mm] \in \IN [/mm]

Bezug
                        
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 Di 12.12.2017
Autor: fred97

Zu 2): für x,y,z >0 gilt

[mm] \frac{x}{y+z} <\frac{x}{y} [/mm]

"Man vergrößert einen Bruch, indem man den Nenner verkleinert."

Bezug
                
Bezug
Zeigen, dass Formel gilt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 12.12.2017
Autor: sancho1980


> Ist b>0, so stimmts:
>  
> [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm]\gdw[/mm] bx+xy <by+xy [mm]\gdw[/mm]
> bx<by.

Kannst du das noch ein Bisschen ausführen? Ich versteh's nicht ...

Bezug
                        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 12.12.2017
Autor: fred97


>
> > Ist b>0, so stimmts:
>  >  
> > [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm] [mm]\gdw[/mm] bx+xy <by+xy [mm]\gdw[/mm]
> > bx<by.
>  
> Kannst du das noch ein Bisschen ausführen? Ich versteh's
> nicht ...


Die Ungleichung [mm]\bruch{x}{b + x}[/mm] < [mm]\bruch{y}{b + y}[/mm]  muktiplizieren wir erst mit b+x durch und dann mit b+y.

Dann erhalten wir bx+xy <by+xy

kommst Du nun klar ?

Bezug
                                
Bezug
Zeigen, dass Formel gilt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Di 12.12.2017
Autor: sancho1980

Ja dankeschön :-)

Bezug
        
Bezug
Zeigen, dass Formel gilt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Di 12.12.2017
Autor: Diophant

Hallo,

>

> 2) [mm]\bruch{a * 2^{-n}}{a * 2^{-n} + b} \le \bruch{a}{b} 2^{-n}[/mm]

>

Ok, ich verwende deinen Hinweis, dass a, b, und n natürliche Zahlen sein sollen.

Dann geht das hier kinderleicht. Multipliziere die Ungleichung einmal mit [mm] 2^n [/mm] durch und der Beweis der Ungleichung steht so gut wie da.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]