matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenZeige , dass f bij. ist
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Zeige , dass f bij. ist
Zeige , dass f bij. ist < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige , dass f bij. ist: 1. Ableitung ?
Status: (Frage) beantwortet Status 
Datum: 16:44 Mi 25.06.2014
Autor: pc_doctor

Aufgabe
f(x) = [mm] \bruch{1+x}{1-x} [/mm]
Bestimme f'(x) , f''(x)
Zeige, dass f bijektiv ist.


Hallo,

f'(x) = [mm] \bruch{2}{(1-x)^{2}} [/mm]

f''(x) = [mm] \bruch{-4x+4}{(1-x)^{4}} [/mm]

Bei der Bijektion habe ich eine Verständnisfrage.
Also ich weiß , dass ne Funktion bij. ist , wenn sie injektiv und surjektiv ist.

Doch, der Prof meinte , dass man in diesem Fall die Bijektion irgendwie mit der 1. Ableitung zeigen kann, weil sie immer größer 0 ist.

Wie ist das gemeint ? Was für ein Zusammenhang besteht zwischen einer Bijektion und der (ersten) Ableitung ?

Vielen Dank im Voraus.

        
Bezug
Zeige , dass f bij. ist: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mi 25.06.2014
Autor: fred97


> f(x) = [mm]\bruch{1+x}{1-x}[/mm]
>  Bestimme f'(x) , f''(x)
>  Zeige, dass f bijektiv ist.


Mir fehlt hier der Definitionsbereich und der Zielbereich ! Ohne diese Angaben ist die Frage nach der Bijektivität ziemlich sinnlos.


>  
> Hallo,
>  
> f'(x) = [mm]\bruch{2}{(1-x)^{2}}[/mm]
>  
> f''(x) = [mm]\bruch{-4x+4}{(1-x)^{4}}[/mm]
>  
> Bei der Bijektion habe ich eine Verständnisfrage.
>  Also ich weiß , dass ne Funktion bij. ist , wenn sie
> injektiv und surjektiv ist.
>  
> Doch, der Prof meinte , dass man in diesem Fall die
> Bijektion irgendwie mit der 1. Ableitung zeigen kann, weil
> sie immer größer 0 ist.
>  
> Wie ist das gemeint ? Was für ein Zusammenhang besteht
> zwischen einer Bijektion und der (ersten) Ableitung ?

Ist I ein Intervall in [mm] \IR [/mm] und ist f:I [mm] \to \IR [/mm] differenzierbar auf I und ist f'(x)>0  für alle x [mm] \in [/mm] I, so ist f auf I streng wachsend und damit auf I injektiv.

FREd


>
> Vielen Dank im Voraus.


Bezug
                
Bezug
Zeige , dass f bij. ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 25.06.2014
Autor: pc_doctor

Hallo FRED, danke für die Antwort.

ALso f ist immer: f : I -> [mm] \IR [/mm]

Def.bereich von f ist halt [mm] \IR [/mm] \ {1}

Sagt der Satz aber dann nicht nur aus , dass die FUnktion nur injektiv ist. Was ist mit der Surjektivität ?

Bezug
                        
Bezug
Zeige , dass f bij. ist: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 25.06.2014
Autor: fred97


> Hallo FRED, danke für die Antwort.
>  
> ALso f ist immer: f : I -> [mm]\IR[/mm]
>  
> Def.bereich von f ist halt [mm]\IR[/mm] \ {1}
>  
> Sagt der Satz aber dann nicht nur aus , dass die FUnktion
> nur injektiv ist. Was ist mit der Surjektivität ?

Ich habs doch oben gesagt: ohne Angabe von Def. Bereich und Zielbereich ist die Frage sinnlos !

$f: [mm] \IR \setminus \{1\} \to \IR$ [/mm] ist nicht surjektiv, das f den Wert -1 nicht annimmt.

$f: [mm] \IR \setminus \{1\} \to \IR \setminus \{-1\}$ [/mm]  ist surjektiv. Zeige das.

FRED


Bezug
                                
Bezug
Zeige , dass f bij. ist: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Mi 25.06.2014
Autor: pc_doctor

Hallo nochmal,
ahh okay , jetzt leuchtet es ein. Alles klar , vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]