matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenZeige das Funktion Lösung ist
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Zeige das Funktion Lösung ist
Zeige das Funktion Lösung ist < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige das Funktion Lösung ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Di 20.10.2015
Autor: mathenoob3000

Aufgabe
Welche der Folgenden Funktionen ist Lösung der Differntialgleichung?

a) $y: [mm] \mathbb{R} \rightarrow \mathbb{R}, [/mm] y(x) := [mm] \cosh{x} [/mm] + [mm] \sinh{\sqrt{1+x^2}}$ [/mm]

$y' = f(x,y)$ mit $f: [mm] \mathbb{R} \times [/mm] ]-1,1[ [mm] \rightarrow \mathbb{R}, [/mm] (x,y) [mm] \mapsto \frac{\sqrt{1+y^2}}{\sqrt{1+x^2}}$ [/mm]

b)  $y: [mm] \mathbb{R} \rightarrow \mathbb{R}, [/mm] y(x) := [mm] \sinh{x} [/mm] + [mm] \cosh{\sqrt{1+x^2}}$ [/mm]

$y' = f(x,y)$ mit $f: [mm] \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, [/mm] (x,y) [mm] \mapsto \frac{\sqrt{1+y^2}}{\sqrt{1+x^2}}$ [/mm]

zu a) Es muss ja gelten: für alle $x [mm] \in \mathbb{R}$, [/mm] $(x,y(x)) [mm] \in \mathbb{R} \times [/mm] ]-1,1[$, aber z.B. für $x=0$ ist $y(0) > 1$ also $ (0,y(0)) [mm] \notin \mathbb{R} \times [/mm] ]-1,1[$
also wäre diese Funktion keine Lösung der Diff.gl.

zu b)
Hier komme ich aber leider nicht ganz weiter..
$y' = f(x,y)$ also

[mm] $\cosh{x} [/mm] + [mm] \frac{\sinh{\sqrt{1+x^2}*x}}{\sqrt{1+x^2}} [/mm] = [mm] \frac{\sqrt{1+y^2}}{\sqrt{1+x^2}}$ [/mm]

Wenn ich in der rechten Seite für $y$ die gegebene Funktion einsetze und versuche das zu lösen, dann kommt bei mir nichts brauchbares raus. Gibt es noch eine andere Möglichkeit um zu prüfen ob die Funktion eine Lösung ist, ausser einsetzen und umformen?

lg

        
Bezug
Zeige das Funktion Lösung ist: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Di 20.10.2015
Autor: leduart

Hallo
du musst doch untersuchen, ob die Lösungen die Dgl erfüllen, dazu musst du erstmal y' bilden, und untersuchen, ob das die Dgl erfüllt, danach kümmerst du dich um Def. Bereich.
in b schreibst du dass die Lösung y' sein soll?
Gruß leduart

Bezug
                
Bezug
Zeige das Funktion Lösung ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Di 20.10.2015
Autor: mathenoob3000

zu a)
Warum genau muss ich das zuest überprüfen? Es gilt doch $cosh(x) > 1$ für alle $x [mm] \in \mathbb{R}$ [/mm] und [mm] $\sinh{\sqrt{1+x^2}} [/mm] > 0$ also kann das ja nie im Definitionsbereich von $f$ liegen, oder?

und zu b)
Wenn ich überprüfen will ob y eine Lösung ist dann muss ich doch zeigen dass y' = f(x,y) ist.

Bezug
                        
Bezug
Zeige das Funktion Lösung ist: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Mi 21.10.2015
Autor: fred97


> zu a)
>  Warum genau muss ich das zuest überprüfen? Es gilt doch
> [mm]cosh(x) > 1[/mm] für alle [mm]x \in \mathbb{R}[/mm] und
> [mm]\sinh{\sqrt{1+x^2}} > 0[/mm] also kann das ja nie im
> Definitionsbereich von [mm]f[/mm] liegen, oder?

Du hast völlig recht.

Stellen wir mal klar, was man unter einer Lösung einer DGL versteht:

Sei D eine Teilmenge des [mm] \IR^2, [/mm] f:D [mm] \to \IR [/mm] eine Funktion , I ein Intervall in [mm] \IR [/mm] und y:I [mm] \to \IR [/mm] eine differenzierbare Funktion.

y ist eine Lösung der DGL

  y'(x)=f(x,y)

wenn

1. (x,y(x)) [mm] \in [/mm] D für alle x [mm] \in [/mm] I

und

2. y'(x)=f(x,y(x)) für alle x [mm] \in [/mm] I.


>  
> und zu b)
>  Wenn ich überprüfen will ob y eine Lösung ist dann muss
> ich doch zeigen dass y' = f(x,y) ist.  

In b) haben wir folgende Situation:

$ y: [mm] \mathbb{R} \rightarrow \mathbb{R}, [/mm] y(x) := [mm] \sinh{x} [/mm] + [mm] \cosh{\sqrt{1+x^2}} [/mm] $

$ y' = f(x,y) $ mit $ f: [mm] \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, [/mm] (x,y) [mm] \mapsto \frac{\sqrt{1+y^2}}{\sqrt{1+x^2}} [/mm] $

Hier ist also D= [mm] \IR^2, I=\IR [/mm] und [mm] $y(x)=\sinh{x} [/mm] + [mm] \cosh{\sqrt{1+x^2}} [/mm] $

Die erste Bedingung (x,y(x)) $ [mm] \in [/mm] $ D für alle x $ [mm] \in [/mm] $ I  ist natürlich erfüllt.

Es ist also noch zu prüfen, ob

(*)    y'(x)=f(x,y(x)) für alle x $ [mm] \in [/mm] $ I

richtig ist.

Zu prüfen ist also:

   y'(x)= [mm] \frac{\sqrt{1+y(x)^2}}{\sqrt{1+x^2}} [/mm] für alle x [mm] \in \IR. [/mm]

Zeige: die letzte Gleichung ist in x=0 nicht erfüllt.

Obiges y ist also keine Lösung der DGL.

FRED

Bezug
                                
Bezug
Zeige das Funktion Lösung ist: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Mi 21.10.2015
Autor: mathenoob3000

Danke!

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]