matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenZeige Divergenz durch  Epsilon
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Zeige Divergenz durch Epsilon
Zeige Divergenz durch Epsilon < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige Divergenz durch Epsilon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 09.05.2012
Autor: elmanuel

Aufgabe
Zeige die Divergenz der Folge [mm] an=(-1)^n [/mm] durch finden passender Versager-Epsilons aus der Definition der Divergenz.

Hallo liebe Gemeinde!

also die Verneinung der Konvergenzaussage gibt bei mir:

[mm] \exists \varepsilon [/mm] <0 : [mm] \forall [/mm] N [mm] \in \IN [/mm] : [mm] \exists [/mm] n [mm] \ge [/mm] N : [mm] |a_n [/mm] -a| [mm] \ge \varepsilon [/mm]

und das gilt [mm] \forall [/mm] a [mm] \in \IR [/mm]

Ich hätte als [mm] Versager-\varepsilon [/mm] (1/2) gewählt da die Folge ständig aus der Epsilon Umgebung von (1/2) herausspringt egal wie groß n ist

aber wie beweise ich das jetzt mit der Definition ?

[mm] |a_n [/mm] - a| = [mm] \begin{cases} |1-a| \\ |(-1)-a| \end{cases} [/mm]

im Fall  a [mm] \ge [/mm] (1/2)
[mm] \Rightarrow [/mm] |(-1)-a| [mm] \ge [/mm] (1/2)

im Fall a< (1/2)
[mm] \Rightarrow [/mm] |1-a| [mm] \ge [/mm] (1/2)

somit gäbe es in jedem Fall ein passendes n für das [mm] |a_n [/mm] -a| [mm] \ge \varepsilon [/mm] sei n nur groß genug gewählt


        
Bezug
Zeige Divergenz durch Epsilon: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Mi 09.05.2012
Autor: fred97


> Zeige die Divergenz der Folge [mm]an=(-1)^n[/mm] durch finden
> passender Versager-Epsilons aus der Definition der
> Divergenz.
>  Hallo liebe Gemeinde!
>  
> also die Verneinung der Konvergenzaussage gibt bei mir:
>  
> [mm]\exists \varepsilon[/mm] <0 : [mm]\forall[/mm] N [mm]\in \IN[/mm] : [mm]\exists[/mm] n [mm]\ge[/mm]
> N : [mm]|a_n[/mm] -a| [mm]\ge \varepsilon[/mm]
>  
> und das gilt [mm]\forall[/mm] a [mm]\in \IR[/mm]


So stimmt das nicht. Sondern:

[mm]\forall[/mm] a [mm]\in \IR[/mm] [mm]\exists \varepsilon[/mm] >0 : [mm]\forall[/mm] N [mm]\in \IN[/mm] : [mm]\exists[/mm] n [mm]\ge[/mm] N : [mm]|a_n[/mm] -a| [mm]\ge \varepsilon[/mm]



>  
> Ich hätte als [mm]Versager-\varepsilon[/mm] (1/2) gewählt da die
> Folge ständig aus der Epsilon Umgebung von (1/2)
> herausspringt egal wie groß n ist
>  
> aber wie beweise ich das jetzt mit der Definition ?
>  
> [mm]|a_n[/mm] - a| = [mm]\begin{cases} |1-a| \\ |(-1)-a| \end{cases}[/mm]
>  
> im Fall  a [mm]\ge[/mm] (1/2)
>  [mm]\Rightarrow[/mm] |(-1)-a| [mm]\ge[/mm] (1/2)
>  
> im Fall a< (1/2)
> [mm]\Rightarrow[/mm] |1-a| [mm]\ge[/mm] (1/2)
>  
> somit gäbe es in jedem Fall ein passendes n für das [mm]|a_n[/mm]
> -a| [mm]\ge \varepsilon[/mm] sei n nur groß genug gewählt
>  



Sei a [mm] \in \IR. [/mm]


Es ist [mm] |a_n-a|=|1-a| [/mm] falls n gerade und [mm] |a_n-a|=|1+a| [/mm] falls n ungerade.

Fall 1: Ist a=1, so ist [mm] |a_n-a|=2 [/mm] falls n ungerade. Als Versager kannst Du [mm] \varepsilon [/mm] = 1 wählen.

Fall 2: Ist a=-1, so ist [mm] |a_n-a|=2 [/mm] falls n gerade. Als Versager kannst Du [mm] \varepsilon [/mm] = 1 wählen.


Fall 3: a [mm] \ne \pm [/mm] 1. Zeige, dass [mm] \varepsilon:=\bruch{1}{2}*min \{|1-a|,|1+a|\} [/mm] das Gewünschte leistet.

FRED

Bezug
                
Bezug
Zeige Divergenz durch Epsilon: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Mi 09.05.2012
Autor: elmanuel


> So stimmt das nicht. Sondern:
>  
> [mm]\forall[/mm] a [mm]\in \IR[/mm] [mm]\exists \varepsilon[/mm] >0 : [mm]\forall[/mm] N [mm]\in \IN[/mm]
> : [mm]\exists[/mm] n [mm]\ge[/mm] N : [mm]|a_n[/mm] -a| [mm]\ge \varepsilon[/mm]

stimmt war mein Tippfehler :)

> > Ich hätte als [mm]Versager-\varepsilon[/mm] (1/2) gewählt da die
> > Folge ständig aus der Epsilon Umgebung von (1/2)
> > herausspringt egal wie groß n ist
>  >  
>  >  
> > [mm]|a_n[/mm] - a| = [mm]\begin{cases} |1-a| \\ |(-1)-a| \end{cases}[/mm]
>  
> >  

> > im Fall  a [mm]\ge[/mm] (1/2)
>  >  [mm]\Rightarrow[/mm] |(-1)-a| [mm]\ge[/mm] (1/2)
>  >  
> > im Fall a< (1/2)
> > [mm]\Rightarrow[/mm] |1-a| [mm]\ge[/mm] (1/2)
>  >  
> > somit gäbe es in jedem Fall ein passendes n für das [mm]|a_n[/mm]
> > -a| [mm]\ge \varepsilon[/mm] sei n nur groß genug gewählt

Ist das falsch ?


>
> Fall 3: a [mm]\ne \pm[/mm] 1. Zeige, dass
> [mm]\varepsilon:=\bruch{1}{2}*min \{|1-a|,|1+a|\}[/mm] das
> Gewünschte leistet.

hmm ...  also sei a [mm]\ne \pm[/mm] 1
so ist min [mm] \{|1-a|,|1+a|\}=|1-a| [/mm] wenn a ([mm]\ne [/mm] 1) positiv oder die 0
oder  min [mm] \{|1-a|,|1+a|\}=|1+a| [/mm] wenn a ([mm]\ne -[/mm] 1) negativ oder die 0

im ersten Fall wäre [mm] \varepsilon:=\bruch{1}{2}*|1-a| [/mm] < |1-a| ein passendes Versager Epsilon

und im zweiten wäre [mm] \varepsilon:=\bruch{1}{2}*|1-a| [/mm] < |1-a| ein passendes Versager Epsilon

Insgesamt also:
[mm] \varepsilon:=\bruch{1}{2}*min \{|1-a|,|1+a|\} [/mm] ein passendes Epsilon für a [mm]\ne \pm[/mm] 1

richtig?

Bezug
                        
Bezug
Zeige Divergenz durch Epsilon: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 11.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]