matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikZahlzerlegungen in Summanden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Zahlzerlegungen in Summanden
Zahlzerlegungen in Summanden < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlzerlegungen in Summanden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mo 09.11.2009
Autor: MK111

Aufgabe
Die Zahl 20 soll in vier Summanden zerlegt werden (z.B. 1+4+3+12), wobei unterschiedliche
Reihenfolgen von Summanden als verschiedene Zerlegungen gezählt werden (also wäre
4+1+3+12 eine andere Möglichkeit als die obige).
Wie viele Möglichkeiten gibt es dafür, wenn
a) Die Null als Summand zugelassen ist?
b) Die Null nicht als Summand zugelassen ist?
c) Mindestens einer der Summanden 0 sein soll?
d) Jeder der Summanden größer oder gleich 2 sein soll?
Stellen Sie Ihre Lösungswege nachvollziehbar dar, indem Sie insbesondere die Bezüge der
gesuchten Anzahlen zu den 0-1-Wörtern klären!

Hallo,
leider komme ich schon bei Aufgabenteil a nicht mehr klar. Zunächst habe ich mir überlegt, dass man bei der 1. Entscheidung 21 mögliche Objekte hat. Wenn man die null bei der 2. Entscheidung außer acht lässt hat man jetzt noch 20 Entscheidungen wenn die eins ausgewählt wurde, 19 wenn die 2 gewählt wurde und so weiter. Bei der 4 Entscheidung bleibt nur 1 Möglichkeit über.

Was aber ist mit der dritten Entscheidung? Diese hängt ja nun so stark von der ersten und zweiten ab, dass ich nicht weiß wie man hier weiter vorgeht. Auch wie man berechnet dass man bei der 2 Entscheidung mal 20, dann nur 19 oder 18 Möglichkeiten hat, weiß ich leider nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zahlzerlegungen in Summanden: Antwort
Status: (Antwort) fertig Status 
Datum: 03:19 Mi 11.11.2009
Autor: felixf

Hallo!

> Die Zahl 20 soll in vier Summanden zerlegt werden (z.B.
> 1+4+3+12), wobei unterschiedliche
>  Reihenfolgen von Summanden als verschiedene Zerlegungen
> gezählt werden (also wäre
>  4+1+3+12 eine andere Möglichkeit als die obige).
>  Wie viele Möglichkeiten gibt es dafür, wenn
>  a) Die Null als Summand zugelassen ist?
>  b) Die Null nicht als Summand zugelassen ist?
>  c) Mindestens einer der Summanden 0 sein soll?
>  d) Jeder der Summanden größer oder gleich 2 sein soll?
>  Stellen Sie Ihre Lösungswege nachvollziehbar dar, indem
> Sie insbesondere die Bezüge der
>  gesuchten Anzahlen zu den 0-1-Wörtern klären!
>
>  Hallo,
>  leider komme ich schon bei Aufgabenteil a nicht mehr klar.
> Zunächst habe ich mir überlegt, dass man bei der 1.
> Entscheidung 21 mögliche Objekte hat. Wenn man die null
> bei der 2. Entscheidung außer acht lässt hat man jetzt
> noch 20 Entscheidungen wenn die eins ausgewählt wurde, 19
> wenn die 2 gewählt wurde und so weiter. Bei der 4
> Entscheidung bleibt nur 1 Möglichkeit über.
>
> Was aber ist mit der dritten Entscheidung? Diese hängt ja
> nun so stark von der ersten und zweiten ab, dass ich nicht
> weiß wie man hier weiter vorgeht. Auch wie man berechnet
> dass man bei der 2 Entscheidung mal 20, dann nur 19 oder 18
> Möglichkeiten hat, weiß ich leider nicht.

Nun, die Anzahl der Moeglichkeiten kannst du ja wie folgt zaehlen: [mm] $\sum_{k=0}^{20} \sum_{\ell=0}^{20-k} \sum_{m=0}^{20-k-\ell} [/mm] 1$.

Diese Summe kannst du nun auswerten; die innerste Summe ist ja [mm] $\sum_{m=0}^{20-k-\ell} [/mm] 1 = 21 - k - [mm] \ell$. [/mm] Jetzt versuche mal [mm] $\sum_{\ell=0}^{20-k} [/mm] (21 - k - [mm] \ell)$ [/mm] als eine Formel nur mit $k$ auszudruecken. (Der Teil $21 - k$ geht einfach, fuer den Teil [mm] $\ell$ [/mm] brauchst du [mm] $\sum_{i=1}^n [/mm] i = [mm] \frac{n (n + 1)}{2}$.) [/mm] Und dann schau dir die letzte Summe an.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]