matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZahlentheorie,Induktion,Unterg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Zahlentheorie,Induktion,Unterg
Zahlentheorie,Induktion,Unterg < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlentheorie,Induktion,Unterg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Di 25.11.2014
Autor: sissile

Aufgabe
Korollar: Ist G eine endliche abelsche Gruppe und n [mm] \in \IZ, [/mm] n>0 hat die Eigenschaft n teilt |G|, so gibt es H [mm] \le [/mm] G mit der Eigenschaft |H|=n

Hallo zusammen,

Ich brauch zu dem Beweis eine Tatsache, die ich nicht schaffe zu beweisen:
n [mm] \in \IZ, [/mm] n [mm] \ge [/mm] 0, s [mm] \ge [/mm] 0, [mm] p_1^{\alpha_1},...,p_s^{\alpha_s} [/mm] sind Primzahlpotenzen:
Aus n| [mm] p_1^{\alpha_1} *..*p_s^{\alpha_s} [/mm] folgt [mm] \exists n_1,..,n_s \in \IZ, n_1,..,n_s>0 [/mm] mit [mm] n=n_1*..*n_s [/mm] und [mm] n_i |p_i^{\alpha_i} [/mm] für [mm] 1\le [/mm] i [mm] \le [/mm] s

Ich hab versucht, dass mit der Induktion zu zeigen:
I.Anfang: s=1, Voraussetzung: n| [mm] p_1^{\alpha_1}, [/mm] dann wähle [mm] n_1=n [/mm]
I.Schritt: s [mm] \rightarrow [/mm] s+1
Voraussetzung: [mm] n|p_1^{\alpha_1}*..*p_s^{\alpha_s} p_{s+1}^{\alpha_{s+1}} [/mm]

Habt ihr einen Tipp?
LG,
sissi



EDIT: Der Beweis des Korollars in der VO:
Nach dem Hauptsatz über endlich erzeugte abelsche Gruppen gibt es nicht notwendigerweiße verschiedene Primzahlpotenzen [mm] p_1^{\alpha_1},..,p_s^{\alpha_s} [/mm] derart dass G [mm] \cong Z_{p_1^{\alpha_1}}\times..\times Z_{p_s^{\alpha_s}} [/mm] woraus [mm] |G|=p_1^{\alpha_1}*..*p_s^{\alpha_s} [/mm] und [mm] n|p_1^{\alpha_1}*..*p_s^{\alpha_s} [/mm] folgt. Man kann zeigen, dass [mm] \exists n_1,..,n_s \in \IZ, n_1,..,n_s>0 [/mm] mit [mm] n=n_1*..*n_s [/mm] und [mm] n_i |p_i^{\alpha_i\} [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] s. (Beachte, dass es sich bei [mm] p_1^{\alpha_1}*..*p_s^{\alpha_s} [/mm] nicht um die Prinfaktorzerlegung von |G| handeln muss!) Nach Lemma59(selbe Korollar nur mit endlichen zyklischen Gruppen) gilt [mm] \forall [/mm] i [mm] \in \{1,..,s\} \exists H_i \le Z_{p_i^{\alpha_i}} [/mm] mit [mm] |H_i|=n_i. [/mm] dann ist [mm] H_1 \times [/mm] .. [mm] \times H_s \le Z_{p_1^{\alpha_1}}\times..\times Z_{p_s^{\alpha_s}}. [/mm]
Ist [mm] \phi: Z_{p_1^{\alpha_1}}\times..\times Z_{p_s^{\alpha_s}} [/mm] ->G ein Isomorphismus, so ist [mm] H:=\phi(H_1 \times [/mm] .. [mm] \times H_s). [/mm] Dann ist H [mm] \le [/mm] G und [mm] |H|=|H_1 \times [/mm] .. [mm] \times H_s| [/mm] = [mm] |H_1| *..*|H_s| [/mm] = [mm] n_1*..*n_s=n [/mm]
[mm] \Box [/mm]

        
Bezug
Zahlentheorie,Induktion,Unterg: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 25.11.2014
Autor: hippias


> Korollar: Ist G eine endliche abelsche Gruppe und n [mm]\in \IZ,[/mm]
> n>0 hat die Eigenschaft n teilt |G|, so gibt es H [mm]\le[/mm] G mit
> der Eigenschaft |H|=n
>  Hallo zusammen,
>  
> Ich brauch zu dem Beweis eine Tatsache, die ich nicht
> schaffe zu beweisen:
>  n [mm]\in \IZ,[/mm] n [mm]\ge[/mm] 0, s [mm]\ge[/mm] 0,
> [mm]p_1^{\alpha_1},...,p_s^{\alpha_s}[/mm] sind Primzahlpotenzen:
>  Aus n| [mm]p_1^{\alpha_1} *..*p_s^{\alpha_s}[/mm] folgt [mm]\exists n_1,..,n_s \in \IZ, n_1,..,n_s>0[/mm]
> mit [mm]n=n_1*..*n_s[/mm] und [mm]n_i |p_i^{\alpha_i}[/mm] für [mm]1\le[/mm] i [mm]\le[/mm] s
>  
> Ich hab versucht, dass mit der Induktion zu zeigen:
>  I.Anfang: s=1, Voraussetzung: n| [mm]p_1^{\alpha_1},[/mm] dann
> wähle [mm]n_1=n[/mm]
>  I.Schritt: s [mm]\rightarrow[/mm] s+1
>  Voraussetzung: [mm]n|p_1^{\alpha_1}*..*p_s^{\alpha_s} p_{s+1}^{\alpha_{s+1}}[/mm]
>  
> Habt ihr einen Tipp?

Ja, betrachte die Primfaktorzerlegung von $n$: welche Primzahlen koennen in dieser Zerlegung ueberhaupt nur auftauchen, und mit hoechstens welchen Exponenten? Damit ist auch keine Induktion mehr noetig.

>  LG,
>  sissi
>  
>
>
> EDIT: Der Beweis des Korollars in der VO:
>  Nach dem Hauptsatz über endlich erzeugte abelsche Gruppen
> gibt es nicht notwendigerweiße verschiedene
> Primzahlpotenzen [mm]p_1^{\alpha_1},..,p_s^{\alpha_s}[/mm] derart
> dass G [mm]\cong Z_{p_1^{\alpha_1}}\times..\times Z_{p_s^{\alpha_s}}[/mm]
> woraus [mm]|G|=p_1^{\alpha_1}*..*p_s^{\alpha_s}[/mm] und
> [mm]n|p_1^{\alpha_1}*..*p_s^{\alpha_s}[/mm] folgt. Man kann zeigen,
> dass [mm]\exists n_1,..,n_s \in \IZ, n_1,..,n_s>0[/mm] mit
> [mm]n=n_1*..*n_s[/mm] und [mm]n_i |p_i^{\alpha_i\}[/mm] für 1 [mm]\le[/mm] i [mm]\le[/mm] s.
> (Beachte, dass es sich bei [mm]p_1^{\alpha_1}*..*p_s^{\alpha_s}[/mm]
> nicht um die Prinfaktorzerlegung von |G| handeln muss!)
> Nach Lemma59(selbe Korollar nur mit endlichen zyklischen
> Gruppen) gilt [mm]\forall[/mm] i [mm]\in \{1,..,s\} \exists H_i \le Z_{p_i^{\alpha_i}}[/mm]
> mit [mm]|H_i|=n_i.[/mm] dann ist [mm]H_1 \times[/mm] .. [mm]\times H_s \le Z_{p_1^{\alpha_1}}\times..\times Z_{p_s^{\alpha_s}}.[/mm]
>  
> Ist [mm]\phi: Z_{p_1^{\alpha_1}}\times..\times Z_{p_s^{\alpha_s}}[/mm]
> ->G ein Isomorphismus, so ist [mm]H:=\phi(H_1 \times[/mm] .. [mm]\times H_s).[/mm]
> Dann ist H [mm]\le[/mm] G und [mm]|H|=|H_1 \times[/mm] .. [mm]\times H_s|[/mm] = [mm]|H_1| *..*|H_s|[/mm]
> = [mm]n_1*..*n_s=n[/mm]
>  [mm]\Box[/mm]  


Bezug
                
Bezug
Zahlentheorie,Induktion,Unterg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Di 25.11.2014
Autor: sissile

Hallo,
Supa,danke für den Rat!

Sei die Primfaktorzerlegung von [mm] n=q_1^{\beta_1}*..*q_n^{\beta_n}= \prod_{p} p^{\beta_p} [/mm]
und [mm] b:=p_1^{\alpha_1}*..*p_s^{\alpha_s} [/mm] = [mm] \produkt_{p}p^{\alpha_p} [/mm]
Wobei das Produkt jeweils über alle Primzahlen läuft, [mm] \alpha_p \ge [/mm] 0 , [mm] \beta_p \ge [/mm] 0 und [mm] \alpha_p=0 \wedge \beta_p=0 [/mm] für alle bis auf endlich viele Primzahlen p.
Laut Voraussetzung n|b [mm] \exists c\in \IN: [/mm] b=nc
Sei c= [mm] \prod_{p}p^{\gamma_p} [/mm] die Primfaktorzerlegung von c.
Dann gilt: [mm] \alpha_p [/mm] = [mm] \beta_p [/mm] + [mm] \gamma_p \forall [/mm] p
D.h. [mm] \beta_p \le \alpha_p \forall [/mm] p

Aus dem Lemma folgere ich die Darstellung von n in seiner Primfaktorzerlegung:
n= [mm] p_1^{\beta_1}*..*p_s^{\beta_s} [/mm]
wobei [mm] \beta_i \le \alpha_i \forall 1\le [/mm] i [mm] \le [/mm] s, bei den unendlich vielen anderen Primzahlen muss die Potenz ja kleinergleich 0 sein, also 0 sein.
[mm] n_i [/mm] := [mm] p_i^{\beta} [/mm] wobei  [mm] p_i^{\beta_i}|p_i^{\alpha_i} [/mm]

Okay, so?
Ich habe trotzdem noch die Frage, ob es mit Induktion auch irgendwie geklappt hätte?

LG,
sissi

Bezug
                        
Bezug
Zahlentheorie,Induktion,Unterg: Antwort
Status: (Antwort) fertig Status 
Datum: 07:54 Mi 26.11.2014
Autor: Schadowmaster

moin,

sieht gut so aus. :)
Zu deiner anderen Frage: ja, es geht auch per Induktion, allerdings sehr umständlich.
Wenn du wirklich eine Induktion machen möchtest, würde ich dir eine Induktion nach der Anzahl der verschiedenen Primfaktoren in der Primfaktorzerlegung von $|G|$ empfehlen, aber das werden ein paar unschöne Fallunterscheidungen und du wirst die meisten Argumente, die du hier verwendet hast, wieder einbauen.
Eine klassische Induktion nach $n$ hingegen wirst du wohl nicht (so ohne weiteres^^) hinkriegen, denn da es um Teilbarkeiten geht wird es ein Problem, einen Zusammenhang zwischen $n$ und $n+1$ herzustellen.


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]