matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeutsche Mathe-OlympiadeZahlenproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Deutsche Mathe-Olympiade" - Zahlenproblem
Zahlenproblem < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenproblem: idee
Status: (Frage) beantwortet Status 
Datum: 20:04 So 28.10.2007
Autor: MissPiggy

ACHTUNG: WETTBEWERBSAUFGABE Nr. []471311 der aktuellen Olympiade

Bitte keine Lösungen geben.


Aufgabe
Man bestimme alle natürlichen zahlen n mit folgenden Eigenschaften:
a) In der Dezimaldarstellung von n kommt jede der Ziffern 0,1,2,3,4,5,6,7,8,9 genau einmal vor
b) Für k=1,2,...,10 ist k ein Teiler der aus den ersten k ziffern von n gebildeten zahl

Hallo zusammen,
Um ehrlich zu sein... ich verstehe noch nicht mal die aufgabe. vllt kann mir ja einer helfen. jede hilfe würde mich echt freuen. reciht vllt schon ein denkanstoß, weil ich echt nicht weiß, was man von mir will



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Zahlenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 So 28.10.2007
Autor: Martin243

Hallo und [willkommenmr]

Ich denke, "jede der Ziffern 0,1,2,3,4,5,6,7,8,9 genau einmal" ist klar.
Was den Rest angeht:
Du sollst eine zehnstellige Zahl bilden, die ich mal als abcdefghij hinschreibe, wobei jeder Buchstabe für eine andere Ziffer steht (nicht das Produkt dieser Zahlen!).
Nun soll gelten:
1 ist Teiler von a
2 ist Teiler von ab
3 ist Teiler von abc
...
10 ist Teiler von abcdefghij

Du überlegst dir am besten, welche Teilbarkeitsregeln du kennst und knobelst ein bisschen.


Gruß
Martin

Bezug
                
Bezug
Zahlenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 So 28.10.2007
Autor: MissPiggy

Aufgabe
Man bestimme alle natürlichen zahlen n mit folgenden Eigenschaften:
a) In der Dezimaldarstellung von n kommt jede der Ziffern 0,1,2,3,4,5,6,7,8,9 genau einmal vor
b) Für k=1,2,...,10 ist k ein Teiler der aus den ersten k ziffern von n gebildeten zahl

ok ich habe verstanden worum es geht...
und ich denke auch mit den teilbarkeitsregeln komme ich zurecht.
(z.B.1. Ein Produkt ist durch eine Zahl teilbar, wenn einer der Faktoren durch die Zahl teilbar ist)
ich habe auch schon seit einer ganzen weile ausprobiert, aber ich weiß nicht, ob es ziel der aufgabe ist auszuprobieren.... ich soll ja alle natürlichen Zahlen bestimmen mit diesen Eigenschaften. Also ich denk mal das müsste auch allgemein gehen.. mir fällt aber nicht auf wie.... bin mit beweisen und abstrakten dingen sehr schlecht.
kann mir da einer ein paar denkanstöße geben?

Bezug
                        
Bezug
Zahlenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 So 28.10.2007
Autor: leduart

Hallo
Da jede Zahl durch 1 teilbar ist, kommt für die erste Ziffer jede in Frage. Welche Zahlen kommen für die zweite Ziffer in Frage?  damit ne Zahl durch 23 teilbar ist, muss ihre Quersumme durch 3 teilbar sein. dadurch weisst du was über a+b+c  Wann ist ne Zahl durch 4 Teilbar, wann durch 5.
die letzte Ziffer ist die leichteste, wann ist ne Zahl durch 10 teilbar. wen du die hast geh zur 5ten Ziffer.
und dann uss man nicht stur rechnen sondern auch knobeln.
wo überall müssen grade Zahlen stehen, usw,usw.
Gruss leduart
[edit] die 2 gestrichen: informix[/edit]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]