matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieZahlenlotto
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Zahlenlotto
Zahlenlotto < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenlotto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Fr 12.10.2007
Autor: Braunstein

Hallo,

es heißt: Im Zahlenlotto wählt man 6 Zahlen aus 45 Zahlen zufällig aus. Jede Auswahl sei gleichwahrscheinlich.

Bedeutet dies, dass man [mm] n*n*n*n*n*n=n^{6} [/mm] Möglichkeiten hat? Denn "jede Auswahl" ist doch "gleichwahrscheinlich", also [mm] \bruch{1}{n}. [/mm]

Ich freue mich auf eine Antwort.

Gruß, h.

        
Bezug
Zahlenlotto: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Fr 12.10.2007
Autor: barsch

Hi,


> es heißt: Im Zahlenlotto wählt man 6 Zahlen aus 45 Zahlen zufällig aus. Jede Auswahl sei gleichwahrscheinlich.

Du willst also 6 aus 45 Zahlen ziehen. Du musst bedenken, wenn du eine Zahl ziehst, wird sie nicht wieder zurückgelegt.

Das heißt, beim ersten Zug kannst du eine aus 45 ziehen, im nächsten dann nur noch eine aus 44, dann eine aus 43....

Insgesamt gibt es also [mm] 45\cdot{}44\cdot{}43\cdot{}42\cdot{}41\cdot{}40 [/mm] Möglichkeiten.

MfG barsch

Bezug
                
Bezug
Zahlenlotto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Fr 12.10.2007
Autor: Braunstein

Dann ist mir der gleichen Wahrscheinlichkeit wohl gemeint, dass eine Auswahl aus den 6 Elementen besteht?

Gruß, h.

Bezug
                        
Bezug
Zahlenlotto: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Fr 12.10.2007
Autor: barsch

Hi,

naja, das mit der gleichen Wahrscheinlichkeit ist insoweit richtig, dass
bei 45 Kugeln die Wahrscheinlichkeit eine bestimmte Kugel zu ziehen bei [mm] \bruch{1}{45} [/mm] liegt.

Ziehst du zum zweiten Mal, befinden sich nur noch 44 Kugeln in der Lostrommel; die Wahrscheinlichkeit eine bestimmte von den übrigen Zahlen zu ziehen, liegt bei [mm] \bruch{1}{44}. [/mm]

In jedem einzelnen Zug hat jede Kugel jeweils die gleiche Chance gezogen zu werden. Im ersten Zug hat jede Kugel die Wahrscheinlichkeit [mm] \bruch{1}{45} [/mm] gezogen zu werden. Im zweiten Zug hat jede der übrig gebliebenen Kugeln die Möglichkeit von [mm] \bruch{1}{44} [/mm] gezogen zu werden, usw.

MfG barsch

Bezug
        
Bezug
Zahlenlotto: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Fr 12.10.2007
Autor: Karl_Pech

Hallo Braunstein,


Eventuell interessiert dich auch diese Diskussion zum Thema Lotto.



Viele Grüße
Karl




Bezug
                
Bezug
Zahlenlotto: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Fr 12.10.2007
Autor: Braunstein

Vielen Dank euch beiden!!! Habt mir sehr geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]