matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Zahlenbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Zahlenbeweis
Zahlenbeweis < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 03.04.2014
Autor: Bodo0686

Aufgabe
Zeige: Haben zwei natürliche Zahlen einen gemeinsamen Teiler, dann auch ihre Summen.

Hallo,
ich habe:

Seien a,b,z und x [mm] \in \IN [/mm] mit t [mm] \not= [/mm] 0

z.Z. [mm] z+x=\frac{z+x}{t} [/mm]

[mm] z=\frac{a}{t} \gdw [/mm] z [mm] \cdot [/mm] t  = a
[mm] x=\frac{b}{t} \gdw [/mm] x [mm] \dot [/mm] t = b

[mm] \Rightarrow [/mm] (z+x) * t. Da t vielfaches der Summe von z+x ist, ist t auch teiler dieser summe.


Grüße


        
Bezug
Zahlenbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Do 03.04.2014
Autor: reverend

Hallo Bodo,

nein, das ist vollkommen kraus.

> Zeige: Haben zwei natürliche Zahlen einen gemeinsamen
> Teiler, dann auch ihre Summen.
>  Hallo,
>  ich habe:
>  
> Seien a,b,z und x [mm]\in \IN[/mm] mit t [mm]\not=[/mm] 0

Aha. Und $t$ kann ich jetzt also frei wählen, z.B. aus [mm] \IR [/mm] oder [mm] \IC? [/mm]

> z.Z. [mm]z+x=\frac{z+x}{t}[/mm]

Das gilt nur, wenn $t=1$ ist und hat nichts mit der Aufgabe zu tun.

> [mm]z=\frac{a}{t} \gdw[/mm] z [mm]\cdot[/mm] t  = a
>  [mm]x=\frac{b}{t} \gdw[/mm] x [mm]\dot[/mm] t = b
>  
> [mm]\Rightarrow[/mm] (z+x) * t. Da t vielfaches der Summe von z+x
> ist, [haee]

Äh, was? [kopfkratz]

> ist t auch teiler dieser summe.

  
Nein, definitiv nicht.

Fang lieber so an: es seien [mm] a,b,x,z,t\in\IN [/mm] und $a=zt$, $b=xt$.

Dann ist [mm] a+b=\cdots=\cdots [/mm]

Grüße
reverend

Bezug
                
Bezug
Zahlenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Do 03.04.2014
Autor: Bodo0686


> Hallo Bodo,
>  
> nein, das ist vollkommen kraus.
>  
> > Zeige: Haben zwei natürliche Zahlen einen gemeinsamen
> > Teiler, dann auch ihre Summen.
>  >  Hallo,
>  >  ich habe:
>  >  
> > Seien a,b,z und x [mm]\in \IN[/mm] mit t [mm]\not=[/mm] 0
>  
> Aha. Und [mm]t[/mm] kann ich jetzt also frei wählen, z.B. aus [mm]\IR[/mm]
> oder [mm]\IC?[/mm]
>  
> > z.Z. [mm]z+x=\frac{z+x}{t}[/mm]
>  
> Das gilt nur, wenn [mm]t=1[/mm] ist und hat nichts mit der Aufgabe
> zu tun.
>  
> > [mm]z=\frac{a}{t} \gdw[/mm] z [mm]\cdot[/mm] t  = a
>  >  [mm]x=\frac{b}{t} \gdw[/mm] x [mm]\dot[/mm] t = b
>  >  
> > [mm]\Rightarrow[/mm] (z+x) * t. Da t vielfaches der Summe von z+x
> > ist, [haee]
>  
> Äh, was? [kopfkratz]
>  
> > ist t auch teiler dieser summe.
>    
> Nein, definitiv nicht.
>  
> Fang lieber so an: es seien [mm]a,b,x,z,t\in\IN[/mm] und [mm]a=zt[/mm],
> [mm]b=xt[/mm].
>  
> Dann ist [mm]a+b=\cdots=\cdots[/mm]
>  
> Grüße
>  reverend

Hallo,

[mm] a,b,x,z,t\in\IN [/mm] und a=zt,
b=xt

a+b= (z [mm] \cdot [/mm] t ) + [mm] (x\cdot [/mm] t) = t(z+x).
  

Bezug
                        
Bezug
Zahlenbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 03.04.2014
Autor: reverend

Hallo nochmal,

> > Fang lieber so an: es seien [mm]a,b,x,z,t\in\IN[/mm] und [mm]a=zt[/mm],
> > [mm]b=xt[/mm].
>  >  
> > Dann ist [mm]a+b=\cdots=\cdots[/mm]
>  >  
> > Grüße
>  >  reverend
>
> Hallo,
>  
> [mm]a,b,x,z,t\in\IN[/mm] und a=zt,
> b=xt
>  
> a+b= (z [mm]\cdot[/mm] t ) + [mm](x\cdot[/mm] t) = t(z+x).

Schön. Eine Umformung nach dem Distributivgesetz. Zusammen mit einem abschließenden Satz könnte das glatt als Beweis durchgehen...

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]