matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieZählmaß auf N
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Zählmaß auf N
Zählmaß auf N < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zählmaß auf N: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:57 Mi 21.11.2007
Autor: Irmchen

Aufgabe
Sei [mm] \mu : \mathcal P ( \mathbb N ) \to \left[ 0, \infty \right] [/mm] das Zählmaß auf [mm] \mathbb N [/mm] , d.h

[mm] \mu (A ) = \left\{\begin{matrix} \# A & falls \ A \ endlich \\ \infty & sonst \end{matrix}\right. [/mm] .

(i) Was sind die Nullmengen? Was sind die messbaren Funktionen?

(ii) Was sind Treppenfunktionen?

(iii) Zeigen Sie : Ist [mm] \summe_{n = 1 }^\infty | f(n) | [/mm] konvergent, dann ist [mm] f: \mathbb N \to \mathbb R [/mm] bezüglich [mm] \mu [/mm] integrabel.

(iv) Was ist dann der Wert des Integrals [mm] \integral f d\mu [/mm] ?
  



Hallo zusammen!

Ich finde diese Aufabe ein wenig komisch formuliert, denn ich weiß z.B. aus der Aufgabenstellung nicht wirklich, ob man nun jetzt nur allgemein aufschreiben soll, was eine Nullmenge, messbare Funktion oder Treppenfunktion ist, oder in Bezug auf das Zählmaß. Deswegen, versuche ich einfach beides hier!

(i) Nach Definition gilt:

Sei [mm] ( X, \mathcal A , \mu ) [/mm] ein Maßraum.
[mm] N \subseteq X [/mm] heißt Nullmenge, wenn  [mm] N \in \mathcal A [/mm] und  [mm] \mu (N) = 0 [/mm] ist.

Also im Falle des Zählmaßes besteht die Nullmenge nur aus der Leeren Menge. Denn dort ist das Maß Null, und die leeren Menge ist Teilmenge  von der Grundmenge und auch nach Definition der Algebra auch in ihr enthalten. Richtig?

Zu den messbaren Funktionen:

Hier ist doch  die Menge aller meßbarer nicht negativer Funktionen gleich der Menge aller Funktionen [mm] f: \mathbb N \to \left[ 0, \infty \right] [/mm] Richtig?

(ii) Nach Definition  aus der Vorlesung:

(a)
[mm] f: X \to \mathbb R [/mm] heißt Stufenfunktion, wenn f nur endlich viele Werte [mm] c_1, c_2, ..., c_k [/mm] annimmt , und alles Stufen
[mm] f^{-1} ( \{ c_i \} ) = \{ x | f(x) = c_i \} [/mm] messbar sind.

(b)
Eine Stufenfunktion heißt Treppenfunktion, wenn die  (endlich vielen Stufen ) zu Wrten ungleich 0 endliches Maß haben.
[mm] c \ne 0 \Rightarrow \mu ( \{ x | f(x) = c \} ) < \infty [/mm]

Aus der Vorlesung ist auch bekannt, dass sich jede Funktion f, welche eine  Treppenfunktion ist, sich auch folgendermaßen schreiben lässt:

[mm] f = \summe_{i \in I } c_i \chi_{A_i} [/mm] , wobei I endlich, [mm] X = \bigcup_{i \in I } A_i [/mm] disjunkt, [mm] \mu ( A_i ) < \infty [/mm] falls [mm] c_i \ne 0 [/mm]

Sehe ich das richtig, wenn ich sage, dass man auch beim Zählmaß so eine Darstellung erreichen könnte? Wenn ich die Menge der natürlichen Zahlen in solche disjunkten [mm] A_i [/mm] unterteile und in der Summe das [mm] c_i [/mm] einfach die Anzahl der Elemente jeder dieser Teilmengen ist...
Oder ist dies komplett falsche Richtung?

Sonst wüsste ich leider nicht, was mir noch zum Zählmaß und Treppenfunktionen einfallen soll.....

(iii) , (iv) Hier habe ich den Tipp bekommen eine Cauchy - Folge von Treppenfunktionen zu bilden und damit irgenwie die punktweise ( f. ü. ) Konvergenz gegen f zu zeigen. Und somit dann später den Limes anzuwenden.... Leider stehe ich da auf dem Schlauch :-(.. Vieleicht kann mir auch hier jemand helfen...

Vielen Dank!
Irmchen

        
Bezug
Zählmaß auf N: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:21 So 25.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]