matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wurzelziehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Wurzelziehen
Wurzelziehen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Sa 11.09.2004
Autor: Schaf

Ich habe diese Frage in keinem weiteren Forum gestellt.

Bin zum ersten mal hier!!! =)
Also, ich schreib montag ne arbeit über wurzeln etc. un da hab ich nicht verstanden, wann man betragstriche setzt, also auch so bei binomischen formlen...immer wenn da x² steht??? zum Beispiel steht hier im Buch so ne Aufgabe:Wurzel aus x²+14x+49 und da soll was mit betrag rauskommen,wieso eigentlich???
Könnt ihr mir bitte helfen, ist echt wichtig, wäre euch dankbar!!
mfg
Janni

        
Bezug
Wurzelziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Sa 11.09.2004
Autor: Josef

Hallo Schaf,

der Ausdruck z.B. [mm]\wurzel{x^2}[/mm] ergibt nicht einfach x, sondern |x|. (Betrag x]. Der Grund: Durch das Quadrieren [mm] (x^2) [/mm] wird aus einer negativen Zahl ihr positives Quadrat. Obwohl das anschließende Wurzelziehen aus dem Quadrat wieder die ursprüngliche Zahl macht, bleibt das Vorzeichen in jedem Fall positiv. Aus der negativen Zahl (-2) wird durch das Quadrieren und anschließende Wurzelziehen die positive Zahl + 2. Positive Zahlen bleiben im gleichen Falll unverändert. Genau dieses wird durch die Darstellung als Betrag |x| ausgedrückt.

Bezug
        
Bezug
Wurzelziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 11.09.2004
Autor: Andi

Hallo Jani,

> Ich habe diese Frage in keinem weiteren Forum gestellt.
>
>
> Bin zum ersten mal hier!!! =)

na dann erst mal ein herzliches willkommen im matheraum
[willkommenmr]

>  Also, ich schreib montag ne arbeit über wurzeln etc. un da
> hab ich nicht verstanden, wann man betragstriche setzt,
> also auch so bei binomischen formlen...immer wenn da x²
> steht???

Das hat dir Josef ja sehr schön erklärt, falls dennoch etwas unklar ist, noch mal nachfragen!! Dann werd ich versuchen es dir auf eine andere Art zu erklären.

> zum Beispiel steht hier im Buch so ne
> Aufgabe:Wurzel aus x²+14x+49 und da soll was mit betrag
> rauskommen,wieso eigentlich???

Nun noch kurz zu deinem Beispiel: [mm] x^2+14x+49=x^2+2*7*x+7^2 [/mm] Na hast du die binomische Formel erkannt?
[mm] x^2+2*7*x+7^2=(x+7)^2 [/mm]

so um dir nun das mit dem Betrag zu erklären, ergänze ich dein Beispiel noch zu einer Gleichung.

[mm] x^2+14x+49=9 [/mm] Die linke Seite mit hilfe der Binomischen Formeln umformen.
[mm] (x+7)^2=9 [/mm] Nun auf beiden Seiten Wurzel ziehen.
[mm] \wurzel{(x+7)^2}=\wurzel{9} [/mm] so nun ist es wichtig zu wissen, dass [mm] \wurzel{a^2} = |a| [/mm] ist. Wobei in unserem Beispiel a=(x+7) ist.
[mm] |(x+7)|=3 [/mm] So, nun muss ich dir noch verraten, wie man die Betragsstriche wieder wegbekommt, oder ? *g*

Ganz allgemein gilt: [mm] |a|=\left\{\begin{matrix} a, & \mbox{wenn }a\mbox{>0} \\ 0, & \mbox{wenn }a\mbox{=0} \\ -a, & \mbox{wenn}a\mbox{<0} \\ \end{matrix}\right [/mm]

Da a (also in unserem Beispiel (x+7) ) ja ungleich 0 ist. Müssen wir nur den ersten und den letzten Fall untersuche.

1. Fall (x+7)>0 :

(x+7)=3 (auf beiden Seiten 7 substrahieren )
x=3-7=-4

Wir haben also als eine Lösung x=-4

2. Fall (x+7)<0 :

-(x+7)=3
-x-7=3 (auf beiden Seiten 7 addieren)
-x=10 (beide Seiten mit (-1) multiplizieren)
x=-10

Wir haben als zweiten Lösung x=-10.

Durch einsetzen der beiden Lösungen kannst du sehen, dass tatsächlich beide Lösungen die Gleichung erfüllen. Und die zweite Lösung hättest du wahrscheinlich ohne Betragsstrichte übersehen, oder ;-)
Ich weiß nicht ob ihr das Lösen von Gleichungen schon hattet. Aber wenn nicht. dann war es zumindest mal eine kurze Begründung warum man den Betrag braucht. Wichtig für dich ist nur, dass du weißt:

[mm] \wurzel{a^2} = |a| [/mm]

>  Könnt ihr mir bitte helfen, ist echt wichtig, wäre euch
> dankbar!!

Ich habe es versucht, am besten du rechnest jetzt gleich noch ein paar Aufgaben und stellst sie hier uns Forum (mit deiner Lösung und deinem Weg). Dann können wir ja mal gemeinsam schauen ob alle Aufgaben auch richtig sind.

Mit freundlichen Grüßen, Andi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]