matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wurzeln/quadr. Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Wurzeln/quadr. Gleichungen
Wurzeln/quadr. Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzeln/quadr. Gleichungen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:22 So 14.11.2004
Autor: rosesandkisses

Ich habe folgende Aufgabe: Geben Sie eine quadratische Gleichung an, die von folgenden Zahlen gelöst wird:

a)  [mm] \wurzel{3} [/mm] und  [mm] \wurzel{5} [/mm]
b) 1 +  [mm] \wurzel{2} [/mm] und 1-  [mm] \wurzel{2} [/mm]
c) 2 +  [mm] \wurzel{2} [/mm] und  [mm] \wurzel{8} [/mm]

und der Lösungsweg ist mir bei diesen Aufgaben ohne Wurzeln auch klar, ich setze die Lösungen einfach in (x-a) * (x-b) ein und bekomme dann  [mm] x_{2} [/mm] + px + q = 0 heraus. Aber wie rechne ich das mit den oben angegeben Wurzeln?

Danke schon mal,
roses

        
Bezug
Wurzeln/quadr. Gleichungen: Schritt für Schritt
Status: (Antwort) fertig Status 
Datum: 15:43 So 14.11.2004
Autor: Youri

Hallo Roses!

Einen schönen Sonntag wünsche ich Dir erstmal...

[schnipp]

> und der Lösungsweg ist mir bei diesen Aufgaben ohne Wurzeln
> auch klar, ich setze die Lösungen einfach in (x-a) * (x-b)
> ein und bekomme dann  [mm]x_{2}[/mm] + px + q = 0 heraus. Aber wie
> rechne ich das mit den oben angegeben Wurzeln?

Das ist doch schonmal sehr gut.
Du setzt die Lösungen ein in:
[mm] (x-a)*(x-b) = 0 [/mm]

Dabei spielt es keine Rolle, welche Form diese Lösungen haben -
man ist es nur nicht so gewöhnt, mit Wurzeln zur rechnen -
es funktioniert aber genauso...

Gehen wir doch mal zu Deinem ersten Beispiel:
a)  $ [mm] \wurzel{3} [/mm] $ und  $ [mm] \wurzel{5} [/mm] $

einsetzen:
[mm] (x-\wurzel{3})*(x-\wurzel{5})=0 [/mm]
[mm]x^2 - \wurzel{3}*x - \wurzel{5}*x + \wurzel{3}*\wurzel{5}=0[/mm]
[mm]x^2-(\wurzel{3}+\wurzel{5})*x +\wurzel{15} = 0[/mm]

Das sieht zwar nicht so schön aus - aber weiter zusammenfassen kannst Du das jetzt erstmal nicht.
Muss ja auch nicht sein:
[mm] p= -(\wurzel{3}+\wurzel{5}) [/mm]
[mm] q=\wurzel{15} [/mm]

Ähnlich verfährst Du nun bei den anderen beiden Aufgaben.
Da einzelne Nullstellen in den Aufgaben aus mehreren Summanden bestehen, empfehle ich Dir, zunächst immer Klammern um die eingesetzten Nullstellen zu setzen, und wirklich Schritt für Schritt vorzugehen.

Schreib doch mal deine Lösungsschritte hier hinein.

Viel Erfolg und liebe Grüße,
Andrea.

Bezug
                
Bezug
Wurzeln/quadr. Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 So 14.11.2004
Autor: rosesandkisses

danke schon mal aber was für nullstellen meinst Du denn jetzt?

Bezug
                        
Bezug
Wurzeln/quadr. Gleichungen: Aufgabe2
Status: (Antwort) fertig Status 
Datum: 16:21 So 14.11.2004
Autor: Youri


> danke schon mal aber was für nullstellen meinst Du denn
> jetzt?

Hallo nochmal Roses -

Also, ich meinte die Nullstellen aus dem zweiten und dritten Beispiel.

b) $1 +  [mm] \wurzel{2} [/mm] $ und $1-  [mm] \wurzel{2} [/mm] $

Wenn Du diese jetzt für a bzw. b in die Gleichung
$ (x-a)*(x-b) = 0 $
einsetzt, solltest Du im ersten Schritt Klammern um den eingesetzten Term
setzen.

Etwa so:
$ [mm] (x-(1+\wurzel{2}))*(x-(1-\wurzel{2})) [/mm] = 0 $

Das würde ich jetzt etwas von Klammern befreien.

$ [mm] (x-1-\wurzel{2})*(x-1+\wurzel{2}) [/mm] = 0 $

...und dann Schritt für Schritt ausmultiplizieren...

Ist Dir jetzt klar, was ich meine?

Lieben Gruß,
Andrea.



Bezug
                                
Bezug
Wurzeln/quadr. Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 So 14.11.2004
Autor: lies_chen

[mm] (x-1-\wurzel{2})*(x-1+\wurzel{2}) [/mm] = 0

...und dann Schritt für Schritt ausmultiplizieren...

[mm] ([red](x-1)[/red]-\wurzel{2})*([red](x-1)[/red]+\wurzel{2}) [/mm] = 0

Anwendung der 3. Binomischen Formel

(x-1)² [mm] -\wurzel{2}² [/mm] = 0   | + 2  | [mm] \wurzel [/mm]  | +1

usw.

Grüßele

Lieschen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]