matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wurzeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Wurzeln
Wurzeln < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzeln: Probleme bei einigen Aufgaben
Status: (Frage) beantwortet Status 
Datum: 14:33 Do 16.12.2004
Autor: Rambo

Hallo,also wir haben heute mit Wurzeln angefangen un jetzt hab ich einige fragen,verstehe verschiedenen aufgaben nit...

1.zbsp. wie berechne ich  (³ [mm] \wurzel{2})³ [/mm]
              oder :                 (hoch [mm] 7\wurzel{5}) [/mm] hoch 21

2. Wie viel m Draht braucht man, um das Kantenmodell eines Würfels mit dem Volumen 5 dm³ herzustellen? Wie viel m² Papier ist nötig, um den Würfel zu bespannen?

3.Ein Spieler hat bei einem Glücksspiel zunächst 15 Punkte.
   Er setzt diese 15 Punkte und gewinnt. Jetzt hat er das x-fache seines      
   Einsatzes. Er setzt wieder alles, gewinnt wieder und besitzt nun das
   x-fache des zweiten Einsatzes usw.
   Auf diese Weise hat er nach 7 Spielen 245 760 Punkte. Berechne x.

Vielen herzlichen Dank für eure Antworten!

        
Bezug
Wurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Do 16.12.2004
Autor: Bastiane

Hallo Marc!
> Hallo,also wir haben heute mit Wurzeln angefangen un jetzt
> hab ich einige fragen,verstehe verschiedenen aufgaben
> nit...

Mmh, also eigentlich sind wir aber nicht dafür da, deine kompletten Hausaufgaben zu rechnen... ;-)

> 1.zbsp. wie berechne ich  (³ [mm]\wurzel{2})³ [/mm]
>                oder :                 (hoch [mm]7\wurzel{5})[/mm]
> hoch 21

[mm] (\wurzel[3]{2})^3 [/mm]
Ihr habt bestimmt gelernt, dass die Wurzelfunktion die Umkehrfunktion der Potenzfunktion ist. Wenn du also aus einer Zahl die Quadratwurzel (also die "2. Wurzel") ziehst und das Ergebnis wieder mit 2 potenzierst (also quadrierst), erhältst du wieder genau deine Ausgangszahl. Das ist genauso, wie wenn du zu einer Zahl 5 addierst und danach wieder 5 subtrahierst. Ist das klar?
Wenn du nun also die 3. Wurzel ziehst und das ganze nachher wieder hoch 3 nimmst, erhältst du die Ausgangszahl, also 2.
Du kannst es aber auch mit den Potenzgesetzen umformen:
[mm] (\wurzel[3]{2})^3=(2^{\bruch{1}{3}})^3=2^1=2 [/mm]

> 2. Wie viel m Draht braucht man, um das Kantenmodell eines
> Würfels mit dem Volumen 5 dm³ herzustellen? Wie viel m²
> Papier ist nötig, um den Würfel zu bespannen?

So, hier hättest du dir eigentlich schon mal ein paar Gedanken machen können. Den Text kann man ja auch in Formeln verwandeln, wenn man die Wurzeln noch nicht berechnen kann. Das hätte ich dir dann ja jetzt zeigen können. Aber gut:
Wie berechnet man das Volumen eines Würfels? Genau! Länge mal Breite mal Höhe. Und das soll 5 [mm] dm^3 [/mm] ergeben. Also, wie lang muss dann eine Seite sein? Ich weiß nicht, ob du das auch schon im Kopf "lösen" kannst, deshalb schreibe ich es mal auf, obwohl es da nicht viel zu schreiben gibt (bedenke, dass bei einem Würfel alle Seiten gleich lang sind):
l*b*h=5
[mm] \gdw [/mm] (da l=b=h)
[mm] l=b=h=\wurzel[3]{5}=5^{\bruch{1}{3}}\approx [/mm] 1,7
(denn [mm] \wurzel[3]{5}*\wurzel[3]{5}*\wurzel[3]{5}=\wurzel[3]{5}^3=5) [/mm]

So, nun haben wir also schon mal die einzelnen Seitenlängen. Aber wonach war gefragt? Nach der Länge des Drahtes für alle Kanten. Und wie viele Kanten hat ein Würfel? Na, zähl doch mal! ;-) Jedenfalls musst du dann nur noch die Länge der Kanten mit der Anzahl der Kanten multiplizieren. Ich erhalte da [mm] \approx [/mm] 2,9.
  
Ich denke, den zweiten Teil schaffst du nun auch alleine - du brauchst nur die Formel für den Umfang, und dafür nimmst du einfach die einzelnen Flächen mal sechs (den ein Würfel hat ja sechs Flächen!). Und wie du solch eine Fläche berechnest, weißt du hoffentlich. Ich erhalte übrigens: [mm] 5^{\bruch{2}{3}}*6\approx [/mm] 17,54.

> 3.Ein Spieler hat bei einem Glücksspiel zunächst 15
> Punkte.
>     Er setzt diese 15 Punkte und gewinnt. Jetzt hat er das
> x-fache seines      
> Einsatzes. Er setzt wieder alles, gewinnt wieder und
> besitzt nun das
> x-fache des zweiten Einsatzes usw.
>     Auf diese Weise hat er nach 7 Spielen 245 760 Punkte.
> Berechne x.

So, ich hoffe, ich habe die Aufgabe hier richtig verstanden, denn ich erhalte ein etwas seltsames Ergebnis, aber vielleicht liegt es auch an meinem Taschenrechner, die Anzeige ist nämlich nicht ganz in Ordnung...
Wir haben also als Ausgangseinsatz 15 Punkte. Nach dem ersten Gewinn haben wir 15*x Punkte, nennen wir diese Zahl mal y. Nach dem zweiten Gewinn haben wir also dann [mm] x*y=x*15*x=15x^2 [/mm] Punkte. Und das geht dann immer so weiter, es kommt immer der Term *x hinzu, insgesamt 7 mal. Wir erhalten also [mm] 15*x^7. [/mm] Ist das so weit noch klar?
Nun wissen wir, das diese Zahl 245 760 ist. Was müssen wir also machen, um x zu erhalten? Genau! Erst durch 15 teilen und dann einfach die siebte Wurzel ziehen.
Ich erhalte da genau 4.

Ist jetzt alles klar?
Viele Grüße
Bastiane
[banane]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]