matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungWurzelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Wurzelfunktion
Wurzelfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelfunktion: Tangente
Status: (Frage) beantwortet Status 
Datum: 20:22 Do 19.12.2013
Autor: sonic5000

Hallo,

gesucht ist die Funktion einer Geraden die durch den Punkt (-1/0) verläuft und zusätzlich die Funktion [mm] y=\wurzel{x} [/mm] tangential berührt.

Mein Ansatz:

Erste Ableitung:

[mm] y=\bruch{1}{2*\wurzel{X}} [/mm]

Punktsteigungsform der Geraden:

[mm] m=\bruch{y-y_0}{x-x_0} [/mm]

Nun Gleichsetzen:

[mm] \bruch{1}{2*\wurzel{X}}=\bruch{y-y_0}{x-x_0} [/mm]

Ist leider der falsche Ansatz... Kann mir jemand helfen?

LG und besten Dank im Voraus...





        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Do 19.12.2013
Autor: Diophant

Hallo,

> Hallo,

>

> gesucht ist die Funktion einer Geraden die durch den Punkt
> (-1/0) verläuft und zusätzlich die Funktion [mm]y=\wurzel{x}[/mm]
> tangential berührt.

>

> Mein Ansatz:

>

> Erste Ableitung:

>

> [mm]y=\bruch{1}{2*\wurzel{X}}[/mm]

>

> Punktsteigungsform der Geraden:

>

> [mm]m=\bruch{y-y_0}{x-x_0}[/mm]

>

> Nun Gleichsetzen:

>

> [mm]\bruch{1}{2*\wurzel{X}}=\bruch{y-y_0}{x-x_0}[/mm]

>

> Ist leider der falsche Ansatz... Kann mir jemand helfen?

So falsch ist der gar nicht, er ist eigentlich fast richtig. Du musst jetzt zwei Dinge bedenken:

- dass auch das x links die Abszisse des Berührpunktes ist. Setze also links noch [mm] x_0 [/mm] an Stelle von X

- Setze [mm] y_0=f(x_0)=\wurzel{x_0} [/mm]

Setze nun noch die Koordinaten von P ein, dann wird ein Schuh draus in Form einer Gleichung in [mm] x_0. [/mm]

Im allgemeinen macht man das mit der sog. allgemeinen Tangentengleichung

t: y=f'(u)*(x-u)+f(u)

mit B(u|f(u)): Berührpunkt

Dann hat man das ganze schon in Form einer Geradengleichung dastehen. Mathematisch gesehen entspricht es aber haargenau deinem Ansatz, nur dass es diesen in gewissem Sinn formalisiert und damit besser handhabbar macht.

Gruß, Diophant

Bezug
                
Bezug
Wurzelfunktion: 2. Versuch
Status: (Frage) beantwortet Status 
Datum: 21:33 Do 19.12.2013
Autor: sonic5000

Oh je, ich hoffe ich habe Dich richtig verstanden:

Also:

[mm] \bruch{y-y_0}{x-x_0}=\bruch{1}{2*\wurzel{x_0}} [/mm]

löse ich nach [mm] y_0 [/mm] auf:

[mm] y_0=\bruch{-x+x_0}{2*\wurzel{x_0}}+y [/mm]

Dann setze ich für für x und y  den Punkt ein:

[mm] y_0=\bruch{1+x_0}{2*\wurzel{x_0}}+0 [/mm]

Ist das so richtig? Heute ist bei mir irgendwie der Wurm drin :(

LG



Bezug
                        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Do 19.12.2013
Autor: chrisno

Hast Du Dir das mal aufgemalt?
Dir fehlt nur ein kleines Stück. Du musst auch noch das [mm] $y_0$ [/mm] in der letzten Gleichung ersetzen. Das lässt sich durch [mm] $x_0$ [/mm] ausdrücken. Dann bekommst Du die Lösung. Es sind schön einfache Zahlen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]