matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenWurzel Komplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - Wurzel Komplexe Zahlen
Wurzel Komplexe Zahlen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Mi 18.01.2012
Autor: Benja91

Aufgabe
Berechnen und zeichnen sie alle 5ten Wurzeln von -4+4i




Hallo,

ich habe diese Frage in keinem anderen Forum gestellt:
Nun brauche ich ja erstmal das Argument ∂. [mm] ∂=Arctg(-4/4)=\bruch{\pi}{4} [/mm] .
Nun habe ich dazu zwei Fragen. In der Lösung wird nun folgendermaßen weitergerechnet:
[mm] √2*(cos(\bruch{3*(\pi/4)}{5}+\bruch{2\pi*k}{5})) [/mm]
Warum rechne ich hier ausgerechnet mit [mm] 3*(\pi/4)? [/mm] Es hängt ja sicherlich damit zusammen, dass die Zahl im 2. Quadranten liegt, aber warum ausgerechnet [mm] 3*(\pi/4). [/mm]

Meine zweite Frage ist folgende: Mir ist nicht klar, wie ich es nun zeichnen kann. Die Lösungen liegen ja alle auf einem Kreis mit Radius √2. Nun habe ich hier ja 5 Wurzeln --> 5 Eck. Aber wie bekomme ich die Lösungen für die x und y Werte der einzelnen Lösungen?

Vielen Dank und Gruß
Benja

        
Bezug
Wurzel Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Mi 18.01.2012
Autor: Event_Horizon

Hallo!

Um die Wurzel zu berechnen, benötigst du den Winkel, den die Zahl mit der positiven reellen Achse einschließt. Und das sind in diesem Fall 135° bzw [mm] \frac{3}{4}\pi [/mm] . der ARCTAN gibt dir leider immernur den kleineren der beiden Winkel an, die beim Schnitt zweier Graden entstehen. Hier ist aber der größere gefragt.

Da die gesuchte Zahl fünf mal mit sich selbst multipliziert die gegebene Zahl ergibt, beträgt ihr Winkel auch nur 1/5. Daher insgesamt: [mm] \frac{3}{4*5}\pi [/mm]

Den x-Wert bekommst du mit der von dir geschriebenen Formel:
[mm] x=\sqrt{2}\cos\left(\frac{3}{4*5}\pi\right) [/mm]

Den y-Wert mit dem SIN statt dem COS. Aber im Prinzip kannst du doch nen Kreis zeichnen, und dann direkt mit dem Geodreieck den Winkel abtragen. Das ist einfacher, als die xy-Werte zu berechnen und zu suchen.


Zu den anderen Werten (im Gradmaß, damit läßt sich einfacher rechnen, und es ist Geodreieckfreundlicher):

Die gefundene Lösung hat einen Winkel von 27°. Denn 5*27°=135°
Aber die Lösung könnte auch einen größeren Winkel haben, sodaß 5*x=135°+360° gilt, denn das entspricht ja immernoch 135°. Wie groß ist der Winkel x in dem Fall? Das ist deine zweite Lösung.
Weiter: 5*x=135°+2*360° ...

Die sechse Lösung sollte 27°+360°=387° sein, aber das entspricht der ersten Lösung. Diese und alle folgenden fallen also weg, weil sie mit den ersten 5 Lösungen zusammen fallen.

Nachdem du zu Fuß die fünf Lösungen berechnet hast, sollte dir auch klar sein, wie die mit dem [mm] \frac{2\pi k}{5} [/mm] zusammen hängen. (Oder war dir das klar?)



Bezug
                
Bezug
Wurzel Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Mi 18.01.2012
Autor: Benja91

Hallo,

vielen, vielen Dank für deine ausführliche Antwort. Das hat mir wirklich sehr geholfen, morgen schreibe ich nämlich meine Matheklausur :)

Gruß
Benja

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]