matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenWurzel- & Quotientenkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Wurzel- & Quotientenkriterium
Wurzel- & Quotientenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel- & Quotientenkriterium: Zusammenhang lim sup / lim inf
Status: (Frage) beantwortet Status 
Datum: 04:48 Do 20.04.2006
Autor: neuling_hier

Aufgabe
Wurzelkriterium
Sei [mm] \sum^\infty_{n=N}a_n [/mm] Reihe.
(i) Existiert [mm] q\in[0,1) [/mm] und [mm] M\in\IN [/mm] mit [mm] \wurzel[n]{|a_n|} \leq [/mm] q für n [mm] \geq [/mm] M, so ist [mm] \sum^\infty_{n=N}a_n [/mm] absolut konvergent.
(ii) Ist [mm] \wurzel[n]{|a_n|} \geq [/mm] 1 für unendlich viele n, so ist [mm] \sum^\infty_{n=N}a_n [/mm] divergent.

Bemerkung:
Die Voraussetzung (i) ist äquivalent zu lim [mm] sup_{n\rightarrow\infty} \wurzel[n]{|a_n|} [/mm] < 1, und die Voraussetzung in (ii) ist erfüllt, falls lim [mm] sup_{n\rightarrow\infty} \wurzel[n]{|a_n|} [/mm] > 1.

Quotientenkriterium
Sei [mm] \sum^\infty_{n=N}a_n [/mm] Reihe.
(i) Existiert [mm] q\in[0,1) [/mm] und [mm] M\in\IN [/mm] mit [mm] a_n \neq [/mm] 0 und [mm] |\frac{a_{n+1}}{a_n}| \leq [/mm] q für n [mm] \geq [/mm] M, so ist [mm] \sum^\infty_{n=N}a_n [/mm] absolut konvergent.
(ii) Existiert [mm] M\in\IN [/mm] mit [mm] a_n \neq [/mm] 0 und [mm] |\frac{a_{n+1}}{a_n}| \geq [/mm] 1 für  n [mm] \geq [/mm] M, so ist [mm] \sum^\infty_{n=N}a_n [/mm] divergent.

Bemerkung:
Es gelte [mm] a\neq [/mm] 0 für [mm] n\geq [/mm] M.
Die Voraussetzung (i) ist dann äquivalent zu lim [mm] sup_{n\rightarrow\infty} |\frac{a_{n+1}}{a_n}| [/mm] < 1, und die Voraussetzung in (ii) ist erfüllt, falls lim [mm] inf_{n\rightarrow\infty} |\frac{a_{n+1}}{a_n}| [/mm] > 1.

Hallo liebes Forum,

Ich habe die o.g. Sätze (insbes. die Bemerkungen) wortwörtlich einem Skript entnommen. Die Beweise zu den Sätzen sind mir zwar soweit klar, aber:

Meine Frage: Kann mir jemand anschaulich erläutern, warum die o.g. (fettgedruckten) Bemerkungen gelten? Mein Verständnis sagt mir folgendes (nicht formal; nur eine Richtung, die andere wäre vermutlich nahezu analog):

[mm] "\Rightarrow": [/mm] Angenommen, es gilt (im Konvergenzfall beim Wurzelkriterium) lim [mm] sup_{n\rightarrow\infty} \wurzel[n]{|a_n|} \geq [/mm] 1. Dann gibt es unendlich viele Suprema der jeweiligen "Restfolgenglieder" in [mm] (\wurzel[n]{|a_n|}), [/mm] die größer oder gleich 1 sind. Wegen der Annahme sind unendlich viele Folgenglieder gleich 1 (ansonsten wäre der "Mittelwert" zwischen dem jeweils größten (Rest-)Folgenglied und 1 eine kleinere Schranke als das Supremum), was jedoch ein Widerspruch zur Voraussetzung [mm] (\wurzel[n]{|a_n|} [/mm] < 1 ab einem bestimmten Folgenglied) ist.

Leider reicht mein Verständnis nicht so weit, um festzustellen, ob es beim Wurzelkriterium (Divergenzfall) nicht auch "lim inf" wie beim Quotientenkriterium heißen muß?!

Im Voraus bereits vielen lieben Dank für eine klärende Antwort! :-)

        
Bezug
Wurzel- & Quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Do 20.04.2006
Autor: banachella

Hallo!

Hier musst du eigentlich nur sorgfältig die Definition des [mm] $\limsup$ [/mm] und [mm] $\liminf$ [/mm] benutzen. In keinem der Fälle benötigst du einen Beweis mit Widerspruch. Versuch es lieber auf dem direkten Weg, dann wird im allgemeinen besser klar, woher der Zusammenhang kommt!

Warum du bei deinem Beweis folgern kannst, dass unendlich viele Folgenglieder gleich 1 sind ist mir unklar. Größer gleich 1 würde ich einsehen. Und was meinst du mit Mittelwert?

Versuchen wir es mal auf dem direkten Weg:

Wurzelkriterium:
(i) Sei zunächst [mm] $\sqrt[n]{a_n}\le [/mm] q$ für alle [mm] $n\ge [/mm] N$ und [mm] $q\in[0;1)$. [/mm] Sei nun [mm] $\left(a_{n_k}\right)_{k\in\IN}$ [/mm] die Teilfolge von [mm] $(a_n)$, [/mm] die den [mm] $\limsup$ [/mm] bildet. Dann gibt es ein [mm] $K\in\IN$, [/mm] so dass [mm] $n_k\ge [/mm] N$ für alle [mm] $k\ge [/mm] K$. Insbesondere:
[mm] $\limsup\sqrt[n]{a_n}=\lim_{k\to\infty} a_{n_k}\le [/mm] q<1$.

Die Rückrichtung ist eigentlich geschenkt:
Sei [mm] $\limsup\sqrt[n]{a_n}=:q<1$. [/mm] Nach Definition des [mm] $\limsup$ [/mm] gibt es also ein [mm] $N\in\IN$, [/mm] so dass [mm] $\sqrt[n]{a_n}\le [/mm] q$ für alle [mm] $n\ge [/mm] N$.

(ii) Sei [mm] $\limsup\sqrt[n]{a_n}>1$. [/mm] Sei wieder [mm] $\left(a_{n_k}\right)_{k\in\IN}$ [/mm] die Teilfolge von [mm] $(a_n)$, [/mm] die den [mm] $\limsup$ [/mm] bildet. Da diese Folge gegen einen Wert $>1$ konvergiert enthät sie unendlich viele Folgenglieder, die größer gleich 1 sind.

Hast du jetzt eine Idee, wie du die Bemerkung für's Quotientenkriterium angehen kannst?

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]