matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikWurfweite und Wurfhöhe gleichs
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "HochschulPhysik" - Wurfweite und Wurfhöhe gleichs
Wurfweite und Wurfhöhe gleichs < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurfweite und Wurfhöhe gleichs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 06.02.2014
Autor: Coxy

Hallo,
ich habe folgendes Problem:
Ich hab eine Wurf weite und eine Wurfhöhe gegeben.
Die Formel sind ja wie folgt:
1) Wurfhöhe: Sh= [mm] \bruch{Vo^2*sin^2\alpha}{2g} [/mm]
2) Wurfweite Sw= [mm] \bruch{Vo^2*sin2\alpha}{g} [/mm]

So ich möchte beides nun nach [mm] sin\alpha [/mm] umformen
Nur wie bekomme ich das hin? Ich komme nur so weit
1) [mm] (Sh*2g)/Vo^2=sin^2\alpha [/mm]
2) [mm] (Sw*g)/Vo^2=sin2\alpha [/mm]
Wie kann ich de Sinus umformen so dass ich ihn in die andere Gleichung einsetzen kann?

        
Bezug
Wurfweite und Wurfhöhe gleichs: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Do 06.02.2014
Autor: chrisno

Ich fürchte, das, was Du möchtest, geht nicht. Vielleicht übersehe ich auch etwas. Naheliegend wäre, die untere Gleichung nach [mm] $\sin(\alpha)$ [/mm] aufzulösen. Doch beim Umformen kommt da noch ein [mm] $\cos(\alpha)$ [/mm] dazu, was die schöne Idee zunichte macht.
Du kannst nach [mm] $\alpha$ [/mm] auflösen und dann einsetzen. Schön wird das aber nicht.

Bezug
                
Bezug
Wurfweite und Wurfhöhe gleichs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Fr 07.02.2014
Autor: GvC


> Ich fürchte, das, was Du möchtest, geht nicht.

Doch, das geht.

> Vielleicht übersehe ich auch etwas.

Ja, Du scheinst etwas zu übersehen.

> Naheliegend wäre, die untere Gleichung nach [mm]\sin(\alpha)[/mm] aufzulösen.

Viel naheliegender wäre es, zunächst die nicht gegebene Anfangsgeschwindigkeit loszuwerden. Das geht am besten, indem man die beiden Gleichungen durcheinander dividiert. Danach das Additionstheorem [mm]\sin{(2\alpha)}=2\cdot\sin{\alpha}\cdot\cos{\alpha}[/mm] anwenden.

> Doch beim Umformen kommt da noch ein [mm]\cos(\alpha)[/mm] dazu, was die schöne Idee zunichte macht.

Warum? Sinus und Kosinus passen doch gut zueinander, wenn sie als Quotient voneinander auftreten.

> Du kannst nach [mm]\alpha[/mm] auflösen und dann einsetzen. Schön wird das aber nicht.

Das wird sogar sehr schön: [mm]\alpha=\arctan{\frac{4\cdot s_h}{s_w}}[/mm]


Bezug
                        
Bezug
Wurfweite und Wurfhöhe gleichs: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Fr 07.02.2014
Autor: chrisno

Ich finde Deinen Ansatz gut. Da das Ziel der Aktion nicht angegeben ist, habe ich mich strikt an die Frage gehalten. Diese ist, wie man beide Gleichungen in die Form [mm] $\sin(\alpha) [/mm] = [mm] \ldots$ [/mm] bringt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]