matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWürfeln mit 12 Würfeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Würfeln mit 12 Würfeln
Würfeln mit 12 Würfeln < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfeln mit 12 Würfeln: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:27 Mi 22.10.2008
Autor: Olllollol

Aufgabe
Es werden 12 Würfel geworfen. Mit welcher Wahrscheinlichkeit tritt jede mögliche
Augenzahl doppelt auf?

Hallo Zusammen.
Ich habe diese Frage auf keiner anderen Internetseite gestellt.

Wir haben uns schon Gedanken dazu gemacht. Es ist ja so, dass die Wahrscheinlichkeit für einen bestimmen Aufgang, d.h. für eine feste Abfolge der Augenzahlen = [mm] (\bruch{1}{6})^{12} [/mm] sein muss... Jetzt geht es aber noch um die Kombinationen. Die Möglichkeiten 12 Würfel anzuordnen beträgt ja [mm] 12^6... [/mm] jedoch muss man ja beachten, dass zB es egal ist welche 1 vorne steht, also wie die Zahlenpaare permutieren. meine Vermutung ist, dass es [mm] \bruch{12!}{2^6} [/mm] viele Möglichkeiten gibt, da  man somit ALLE Kombinationen betrachet und quasi die doppelten rausstreicht... aber in der vorlesung sind wir noch nicht in  über den binomialkoeffizienten hinaus gekommen, jedoch finde ich diese lösung zu trivial, da der binomialkoeffizient ja quasi die Möglichkeiten für das ziehen von k elementen aus einer n elementigen menge angibt...

ich hoffe ihr könnt mir helfen...

danke!!

        
Bezug
Würfeln mit 12 Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mi 22.10.2008
Autor: rabilein1

Ich würde folgendermaßen vorgehen:

Tu zunächst einmal so, als müsstest du eine bestimmte Reihenfolge einhalten - du willst werfen:

1 1 2 2 3 3 4 4 5 5 6 6

Die Wahrscheinlichkeit dafür ist  [mm] \bruch{1}{6^{12}} [/mm]


Die exakte Reihenfolge   1 1 2 2 3 3 4 4 5 5 6 6  muss aber nicht eingehalten werden.
Es könnte genau so gut auch  2 4 1 3 4 5 5 1 6 2 6 3  sein.  
Wären es 12 unterschiedliche Zahlen, so gäbe es 12! Möglichkeiten.

Da man aber jede der 6 Zahlen untereinander austauschen kann, muss man noch 6 mal durch 2 dividieren, um die Anzahl der Kombinationen raus zu kriegen.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]