matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWürfel Wahrscheinlichkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Würfel Wahrscheinlichkeit
Würfel Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel Wahrscheinlichkeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:00 Do 25.08.2011
Autor: Brice.C

Aufgabe
a) Wie groß ist die Wahrscheinlichkeit, dass bei einem Wurf mit drei Würfeln
mindestens 15 Augen gewürfelt werden?

b) Wie groß ist die Wahrscheinlichkeit, dass bei einem Wurf mit drei Würfeln 15 Augen gewürfelt werden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo liebe Forum Mitglieder!

Brauche ein bisschen Unterstützung, da ich zwar was gerechnet habe, aber nicht sicher bin ob es stimmt.

Weiss jemand wie man die Aufgabe mathematisch lösen kann, ohne probier verfahren und abzählen?


Mein Ansatz:


bei a)

3 Würfel, und mindestens 15 Augen würfeln

p=1/6 und die Laplace regel kann man anwenden: Laplace = [mm] \frac{Anz. günstige Fälle}{Anz. mögliche Fälle} [/mm]

Anzahl mögliche Fälle = [mm] 6^3 [/mm] = 216

Mindestens bedeutet, entweder 16,17,18 Augen.




Folgendes habe ich herausgefunden:

Augensumme > 15 gibt es 4 Kombinationen

1.)4 6 6 (3 mal)
2.)5 5 6 (3 mal)
3.)5 6 6 (3 mal)
4.)6 6 6 (1 mal)

Somit erhält man : [mm] \frac{10}{216} [/mm]

Für die Augensumme < 15 kann man berechnen [mm] 1-\frac{10}{216}-\frac{10}{216}=\frac{196}{216}=\frac{49}{54} [/mm]

= 90.74%


bei b)

Für genau 15 Augen gibt es nur 3 Kombinationen:

1.) 3 6 6 (3 mal)
2.) 4 5 6 (6 mal)
3.) 5 5 5 (1 mal)

ergibt wieder [mm] \frac{10}{216}= [/mm] 4.63 %


Wie aber setze ich das mathematisch um, mit Formeln und dergleichen? Sind meine Überlegungen soweit richtig?

Was muss ich noch ergänzen?


Vielen Dank schon mal fürs durchsehen


vg Brice.C

        
Bezug
Würfel Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Do 25.08.2011
Autor: Diophant

Hallo,

die Anzahl der möglichen Fälle hast du richtig bestimmt, wenn du deinen Wahrscheinlichkeitsraum so wählst, dass die Würfel unterschieden werden.

Du hast jedoch etwas missverstanden: mindestens 15 bedeutet, die Wahrscheinlichkeit zu berechnen, dass eine der Zahlen aus [mm] \{15;16;17;18\} [/mm] auftritt.

Jetzt hast du also die Anzahl der möglichen Kombinationen bestimmt, und dabei beachtet, dass man unterschiedliche Reihenfolgen beachten muss. Deine Vorgehensweise zu a) ist also prinzipiell richtig, bis auf die Tatsache, dass du die 15 nicht erfasst hast.

Bei der b) ist demzufalsge alles richtig.

Es gibt keine Patentrezepte für solche Abzählprobleme. Man muss eben jeweils schauen, welches kombinatorische Modell jeweils vorliegt, wobei das bei solchen Augensummengeschichten mit mehr als zwei Würfeln schon ziemlich kompliziert wird.

Gruß, Diophant

Bezug
                
Bezug
Würfel Wahrscheinlichkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:08 Fr 26.08.2011
Autor: Brice.C

Hallo Diophant


Danke für deine Antwort. Ja beim 2. hinsehen habe ich gemerkt das die 15 untergegangen ist. :-(

Hab mich wieder ans abzählen getan und raus bekommen das für 15 eben genau 10 Möglichkeiten existieren. Ergibt das somit 20 für Alle zusammen.


so ergibt sich :   [mm] \frac{20}{216} [/mm]

Dann muss die Rechnung neu lauten: [mm] 1-\frac{20}{216}-\frac{20}{216}= [/mm] 81.48%


Nun ist jetzt das die korrekte, definitive Lösung oder fehlt noch was?



vg Brice.C

Bezug
                        
Bezug
Würfel Wahrscheinlichkeit: Laplace-Regel
Status: (Antwort) fertig Status 
Datum: 17:23 Fr 26.08.2011
Autor: Infinit

Hallo Brice.C,
die Anwendung der Laplace-Regel langt doch vollkommen hier. Du sollst doch nicht das Ereignis ausrechnen, dass wenigstens 15 Punkte erzielt werden, sondern mindestens 15. Bei wievielen Fällen dies möglich ist, hast Du doch bestimmt, die Anzahl aller möglichen Fälle kennst Du auch.
Viele Grüße,
Infinit



Bezug
                                
Bezug
Würfel Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 26.08.2011
Autor: Brice.C

Ui jetzt habe ich mich selber verwirrt :-S



Was ist jetzt die Antwort fürs a)

Bezug
                                        
Bezug
Würfel Wahrscheinlichkeit: Entwirren
Status: (Antwort) fertig Status 
Datum: 18:05 Fr 26.08.2011
Autor: Infinit

Jetzt hast Du wohl einmal zuviel um die Ecke gedacht. Übrig bleiben 20 günstige Fälle und 216 mögliche.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]