matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWürfel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Würfel
Würfel < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:22 Mo 16.02.2009
Autor: learningboy

Guten Morgen,

10) Zweimaliges Werfen eines Würfls: Bestimmen Sie die Wahrscheinlichkeiten für
a) Zwei gleiche Augenzahlen

1/36

Hier ist nämlich als Lösung 1/6 angegeben.

Danke!!

        
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:27 Mo 16.02.2009
Autor: glie


> Guten Morgen,
>  
> 10) Zweimaliges Werfen eines Würfls: Bestimmen Sie die
> Wahrscheinlichkeiten für
>  a) Zwei gleiche Augenzahlen
>  
> 1/36
>  
> Hier ist nämlich als Lösung 1/6 angegeben.

Hallo,

mach dir doch zunächst mal den Ergebnisraum deines Zufallsexperiments klar. Wie sieht der aus? Wieviele Elemente enthält er?

Wie sieht dann das Ereignis "zwei gleiche Augenzahlen" aus? Wieviele Elemente enthält das Ereignis?

Dann solltest du dir klarmachen, dass es sich bei deinem Zufallsexperiment um ein Laplace-Experiment handelt.

Jetzt sollte das Berechnen der Wahrscheinlichkeit des Ereignisses kein Problem mehr sein.


Gruß Glie

>  
> Danke!!


Bezug
                
Bezug
Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:31 Mo 16.02.2009
Autor: learningboy

Ergebnisraum

1,1;2;1,...6,6

Das sind dann nicht 1/36?

Doch eigentlich doch schon... :-(

Bezug
                        
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:38 Mo 16.02.2009
Autor: glie


> Ergebnisraum
>  
> 1,1;2;1,...6,6

Ergebnisraum würde ich etwas anders aufschreiben, aber ich denke das passt so weit bei dir.
[mm] \Omega=\{(1/1),(1/2),(1/3),...(6/6)\} [/mm]

>  
> Das sind dann nicht 1/36?

Nein! Du hast das Ereignis nicht erfasst.
[mm] E=\{(1/1),(2/2),(3/3),(4/4),(5/5),(6/6)\} [/mm]

Damit gilt [mm] P(E)=\bruch{|E|}{|\Omega|}=\bruch{6}{36}=\bruch{1}{6} [/mm]

>  
> Doch eigentlich doch schon... :-(


Bezug
        
Bezug
Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:40 Mo 16.02.2009
Autor: learningboy

wenigstens eine 2

gegenereignis: keine 2

1 - ((5/6)²)

1 - (25/36)

= 11/36

Richtig?

Danke!

Bezug
                
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:44 Mo 16.02.2009
Autor: glie


> wenigstens eine 2
>  
> gegenereignis: keine 2
>  
> 1 - ((5/6)²)
>  
> 1 - (25/36)
>  
> = 11/36
>  
> Richtig?

Das passt so [ok]

Dann nochmal zurück zur Aufgabe vorher...mit den zwei gleichen Augenzahlen....

Du könntest das auch so machen wenn es für dich einfacher ist:

Erster Wurf beliebige Zahl, zweiter Wurf dann gleiche Zahl wie beim ersten Wurf, also:

[mm] P=\bruch{6}{6}*\bruch{1}{6}=\bruch{1}{6} [/mm]

>  
> Danke!


Bezug
                        
Bezug
Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:57 Mo 16.02.2009
Autor: learningboy

vielen dank jetzt hab ich es verstanden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]