matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikWorte in Roman
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Worte in Roman
Worte in Roman < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Worte in Roman: Korrektur, Rückfrage
Status: (Frage) für Interessierte Status 
Datum: 22:44 Fr 20.03.2009
Autor: groedi2001

Aufgabe
Durchschnittlich jedes 10 Wort eines deutschsprachigen Romans ist dreisilbig.
a.) Wie viel Dreisilbige Wörter kann man auf einer Romanseite von 480 Wörtern erwarten?
b.) Wie groß ist die Wahrscheinlichkeit, in einem Absatz von 100 Wörtern mehr als 10 (mindestens 15) dreisilbige Wörter anzutreffen
c.) Mit welcher Wahrscheinlichkeit liegt die Anzahl der dreisilbigen Wörter in diesem Absatz zwischen 8 und 12?

Hallo das sind meine Ergebnisse wäre schön wenn jemand mal schauen könnte ob die richtig sind.

A.) E(x) = 48
B.) P(B) mehr als 10 = 0,1684 und min 15 P(B)= 0,0726
C.) K1 = 9 -> 0,13041
K2 = 10 -> 0,13186
K3 = 11 -> 0,119877
macht gesamt 0,3821

Danke Schonmal

        
Bezug
Worte in Roman: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:31 Sa 21.03.2009
Autor: groedi2001

Ab 15 Uhr werde ich hier noch den Rechenweg zur Verfügung stellen.

Bezug
                
Bezug
Worte in Roman: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Sa 21.03.2009
Autor: groedi2001

Hier der Rechenweg

A.) [mm] E(x)=n+P=\bruch{1}{10}*480=48 [/mm]

B.) N=100
[mm] p=\bruch{1}{10} [/mm]
[mm] K2\ge15 [/mm]  = P(B)=0,1684
K1>10  = P(B)=0,0726

C.)

P(8<K<12)=P(K=9)+P(K=10)+P(K=11)
K=9= 0,13041
K=10=0,13186
K=11=0,119877

[mm] \approx0,3821 [/mm]




Wäre Schön mal jemand drüber schauen könnte.

Bezug
                        
Bezug
Worte in Roman: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 So 22.03.2009
Autor: Flaminia

Es wäre durchaus hilfreich gewesen, wenn du dazu geschrieben hättest, welche Tabelle du verwendet hast.
Da du bei der c) die einzelnen Wete für  K=9, usw. angegeben hast, gehe ich davon aus, dass du nicht mit einer Verteilungstabelle, also einer Tabelle, die dir die Wahrscheinlichkeit für zum Beispiel [mm] P(K\le9) [/mm] angibt,  gearbeitet hast.
Nun gut, ich habe jedenfalls mit folgender Tabelle gearbeitet:
[]Binomilaverteilung n=100

zu A)
Ich nehme an, dass + war ein Tippfehler, man rechnet natürlich
E(X)=n*p=48

zu B)
deine Werte kann ich leider nicht bestätigen. Den Wert den du für K>10 angegeben hast, habe ich aber für

[mm] P(K\ge15)=1-P(K\le14)=1-0,9274=0,0726 [/mm] raus.
Da du ja leider nicht dazu geschrieben hast, wie du genau auf deine Werte kommst, kann ich dazu weiter nichts sagen.

[mm] P(K>10)=1-P(K\le10)=1-0,5832=0,4168 [/mm]

zu C)
für P(8<K<12) habe ich auch 0,3821 raus, allerdings bin ich mir nicht sicher, ob die Aufgabe nicht vielleicht nach [mm] P(8\le [/mm] K [mm] \le12) [/mm] fragt ... hm, da das ja aber nicht so deutlich rauskommt, würde ich bei deinem Ergebnis bleiben.

Ich hoffe, ich konnte dir weiterhelfe.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]