matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieWohldefiniertheit Maßintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Wohldefiniertheit Maßintegral
Wohldefiniertheit Maßintegral < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wohldefiniertheit Maßintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 22.05.2012
Autor: steppenhahn

Aufgabe
Sei [mm] $(\Omega, \mathcal{A}, \mu)$ [/mm] ein Maßraum.
Ist [mm] $X:\Omega \to \overline{\IR}$ [/mm] eine nichtnegative messbare numerische Funktion und [mm] $X_i \uparrow [/mm] X$ eine Folge nichtnegativer primitiver Funktionen, so definiere

[mm] \int [/mm] X d [mm] \mu [/mm] := [mm] \sup_{i\in\IN} \int X_i [/mm] d [mm] \mu. [/mm]



Hallo!

Üblicherweise wird für den Beweis der Wohldefiniertheit zuerst eine Hilfsaussage gezeigt, nämlich dass:

" Ist X eine nichtneg. primitive Funktion, [mm] $(X_i)$ [/mm] monoton wachsende Folge nichtnegativer primitiver Funktionen mit $X [mm] \le \sup_{i\in\IN}X_i$, [/mm] so gilt [mm] $\int [/mm] X d [mm] \mu \le \sup_{i\in\IN}\int X_i [/mm] d [mm] \mu$. [/mm] "

Daraus folgt dann leicht die Behauptung. Man braucht für den "üblichen" Beweis jedoch, dass primitive Funktionen NICHT den Wert [mm] $\infty$ [/mm] annehmen, in unserer Vorlesung wurde das aber so definiert.

Ich überlege nun, ob man den Beweis so modifizieren kann, dass er trotzdem funktioniert. Der Einfachheit halber wollte ich zunächst nur den Fall $X = [mm] \infty$ [/mm] überall betrachten.

D.h. mein Ziel ist es zu zeigen:
"Ist [mm] $(X_i)$ [/mm] monoton wachsende Folge nichtnegativer primitiver Funktionen mit [mm] $\sup_{i\in\IN}X_i [/mm] = [mm] \infty$, [/mm] so folgt [mm] $\sup_{i\in\IN}\int X_i [/mm] d [mm] \mu [/mm] = [mm] \infty$. [/mm] "

Die [mm] $X_i$ [/mm] haben alle die Gestalt [mm] $X_i [/mm] = [mm] \sum_{k=1}^{m_i} x_{i_k}*1_{A_{i_k}}$ [/mm] mit [mm] $x_{i_k} \in \overline{\IR}_{\ge 0}$, $A_{i_k} \in \mathcal{A}$. [/mm]


--> Meint ihr, dass kann man zeigen? Ich scheitere im Moment daran, weil punktweise Konvergenz zu schwach ist um irgendwelche Aussagen für die [mm] $X_i$ [/mm] zu bekommen...


Viele Grüße,
Stefan

        
Bezug
Wohldefiniertheit Maßintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Mi 23.05.2012
Autor: tobit09

Hallo Stefan,


> Üblicherweise wird für den Beweis der Wohldefiniertheit
> zuerst eine Hilfsaussage gezeigt, nämlich dass:
>  
> " Ist X eine nichtneg. primitive Funktion, [mm](X_i)[/mm] monoton
> wachsende Folge nichtnegativer primitiver Funktionen mit [mm]X \le \sup_{i\in\IN}X_i[/mm],
> so gilt [mm]\int X d \mu \le \sup_{i\in\IN}\int X_i d \mu[/mm]. "
>  
> Daraus folgt dann leicht die Behauptung. Man braucht für
> den "üblichen" Beweis jedoch, dass primitive Funktionen
> NICHT den Wert [mm]\infty[/mm] annehmen, in unserer Vorlesung wurde
> das aber so definiert.

>  
> Ich überlege nun, ob man den Beweis so modifizieren kann,
> dass er trotzdem funktioniert.

Ja, das ist möglich.


> Der Einfachheit halber
> wollte ich zunächst nur den Fall [mm]X = \infty[/mm] überall
> betrachten.
>  
> D.h. mein Ziel ist es zu zeigen:
>  "Ist [mm](X_i)[/mm] monoton wachsende Folge nichtnegativer
> primitiver Funktionen mit [mm]\sup_{i\in\IN}X_i = \infty[/mm], so
> folgt [mm]\sup_{i\in\IN}\int X_i d \mu = \infty[/mm]. "

Diese Aussage ist für [mm] $\mu$ [/mm] das Nullmaß falsch.


> --> Meint ihr, dass kann man zeigen? Ich scheitere im
> Moment daran, weil punktweise Konvergenz zu schwach ist um
> irgendwelche Aussagen für die [mm]X_i[/mm] zu bekommen...

Unterscheide die Fälle [mm] $\mu(X=\infty)=0$ [/mm] und [mm] $\mu(X=\infty)>0$. [/mm]

Im Falle [mm] $\mu(X=\infty)=0$ [/mm] kannst du die zu zeigende Aussage auf den bereits bewiesenen Fall, in dem $X$ und die [mm] $X_i$ [/mm] reellwertig sind, zurückführen.

Im Falle [mm] $\alpha:=\mu(X=\infty)>0$ [/mm] kannst du folgende Aussage über die [mm] $X_i$ [/mm] zeigen: Für alle (noch so großen) [mm] $K\in\IR$ [/mm] existiert ein [mm] $i_0\in\IN$ [/mm] mit [mm] $\mu(X_{i_0}>K)\ge\bruch\alpha2$. [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Wohldefiniertheit Maßintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:34 Mo 28.05.2012
Autor: steppenhahn

Hallo Tobias,

vielen Dank für deine Antwort!
Damit habe ich es hinbekommen.

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]