matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenWohldefiniert, isomorph
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Wohldefiniert, isomorph
Wohldefiniert, isomorph < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wohldefiniert, isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 So 18.12.2011
Autor: Lola292

Aufgabe
Es sei V= [mm] \IR^3[/mm] und L: [mm] \IR^3[/mm]->[mm] \IR^3[/mm] gegeben durch L([mm] \xi_1,\xi_2,\xi_3[/mm])=[mm]3*\xi_1+2*\xi_2-\xi_3[/mm]. Weiterhin sei [mm] E={x\in\IR^3: L(x)=0}. [/mm]

a) Zeigen Sie, dass die Abbildung [mm]\IR^3[/mm]/E [mm] \rightarrow \IR[/mm] (über dem Pfeil ist noch ein L, weiß aber nicht, wie man das hier macht) mit a+E [mm] \rightarrow [/mm] L(a) eine wohldefinierte lineare Abbildung ist.

b)Zeigen Sie, dass die Abbildung aus a) ein Isomorphimus ist.

Hallo,

bei a muss ich ja zeigen, dass die Abbildung nicht vom Repräsentanten abhängt. Leider ist mir nicht klar, wie ich damit anfangen soll. Kann ich mit der Behauptung anfangen, dass für alle x und y aus a+E gilt L(x)=L(y)? Und wenn ja, wie mache ich dann da weiter? Stehe gerade total auf dem Schlauch.

Zu b) habe ich leider auch nicht viel mehr Ahnung. Ich weiß, dass ein Isomorphimus ein bijektiver Homomorphismus ist. Das heißt dann wohl, dass ich nachweisen muss, dass die Abbildung bijektiv ist, aber wie genau fange ich damit an?

Viele Grüße
Lola

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wohldefiniert, isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 So 18.12.2011
Autor: felixf

Moin Lola!

> Es sei V= [mm]\IR^3[/mm] und L: [mm]\IR^3[/mm]->[mm] \IR^3[/mm]

Hier soll $L : [mm] \IR^3 \to \IR$ [/mm] stehen.

> gegeben durch L([mm] \xi_1,\xi_2,\xi_3[/mm])=[mm]3*\xi_1+2*\xi_2-\xi_3[/mm].
> Weiterhin sei [mm]E=\{x\in\IR^3: L(x)=0\}.[/mm]

(Wenn du \{ \} anstelle { } verwendest, werden die Klammern auch angezeigt.)

> a) Zeigen Sie, dass die Abbildung [mm]\IR^3[/mm]/E [mm]\rightarrow \IR[/mm]
> (über dem Pfeil ist noch ein L, weiß aber nicht, wie man
> das hier macht) mit a+E [mm]\rightarrow[/mm] L(a) eine
> wohldefinierte lineare Abbildung ist.

Das macht man z.B. durch [mm] $\IR^3/E \overset{L}{\rightarrow} \IR$. [/mm]

> b)Zeigen Sie, dass die Abbildung aus a) ein Isomorphimus
> ist.
>  
> bei a muss ich ja zeigen, dass die Abbildung nicht vom
> Repräsentanten abhängt. Leider ist mir nicht klar, wie
> ich damit anfangen soll. Kann ich mit der Behauptung
> anfangen, dass für alle x und y aus a+E gilt L(x)=L(y)?

Nun, das musst du zeigen! Das darfst du nicht annehmen!

> Und wenn ja, wie mache ich dann da weiter? Stehe gerade
> total auf dem Schlauch.

Du faengst an mit $x, y [mm] \in \IR^3$ [/mm] mit $x + E = y + E$. Du musst jetzt zeigen, dass $L(x) = L(y)$ ist.

Dazu beachte, dass $x + E = y + E$ bedeutet, dass $x - y [mm] \in [/mm] E$ ist. Also fang doch mal an mit $L(x) = L(y + (x - y))$. Verwende jetzt, dass $L$ linear ist und verwende die Definition von $E$.

> Zu b) habe ich leider auch nicht viel mehr Ahnung. Ich
> weiß, dass ein Isomorphimus ein bijektiver Homomorphismus
> ist. Das heißt dann wohl, dass ich nachweisen muss, dass
> die Abbildung bijektiv ist, aber wie genau fange ich damit
> an?

Zeige zuerst, dass sie surjektiv ist. Bei linearen Abbildungen nach [mm] $\IR$ [/mm] reicht es dazu aus, ein $v$ anzugeben so dass dieses $v$ auf ein Element [mm] $\neq [/mm] 0$ abgebildet wird.

Um zu zeigen, dass es injektiv ist, nimmst du ein $x + E [mm] \in \IR^3/E$ [/mm] mit $L(x) = 0$, und zeigst, dass $x + E = 0 + E$ ist. Damit hast du gezeigt, dass der Kern nur aus dem Nullelement in [mm] $\IR^3/E$ [/mm] besteht, und du solltest wissen dass daraus folgt, dass die Abbildung injektiv ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]