matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenWinkelhalbierende bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Winkelhalbierende bestimmen
Winkelhalbierende bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelhalbierende bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Do 19.05.2011
Autor: Crashday

Halihalo,

es sind 3 Punkte gegeben:

[mm] A\A(1/2/3) [/mm]

[mm] B\B(1/5/7) [/mm]

[mm] C\C(1/2/5) [/mm]

Gesucht ist die Gleichung der Winkelhalbierenden von [mm] \alpha [/mm]

Zunächst habe ich die Richtungsvektoren [mm] \overrightarrow{AB} [/mm] und [mm] \overrightarrow{AC} [/mm] bestimmt.

Für [mm] \overrightarrow{AB} [/mm] habe ich [mm] \vektor{0 \\ 3 \\4} [/mm] und für [mm] \overrightarrow{AC} \vektor{0 \\ 0 \\ 2} [/mm] raus.

Jetzt stehe ich aber auf dem Schlauch. Ich weiß nicht weiter, was ich berechnen soll. Könnte mir da jemand helfen?

Danke schon mal im vorraus.



        
Bezug
Winkelhalbierende bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 19.05.2011
Autor: Adamantin

Also ich denke mir das so: Du hast ein Dreieck. In diesem gibt es einen Winkel [mm] $\alpha$, [/mm]  der bei Punkt A liegt und von den Schenkeln AB und AC gebildet wird. Wie lautet jetzt die Gleichung der Geraden, die durch A geht und genau in der Mitte zwischen AB,AC verläuft? Wäre das nicht die gesuchte Winkelhalbierende? ;)

Nachtrag: Es ist doch ganz einfach, wie Al-Chwaritzma aufgezeigt hat, auf sowas triviales bin ich natürlich wie immer nicht gekommen, Schande auf mein Haupt! Siehe seine Bemerkung, auch wenn der letzte Satz AR heißen muss :) Und zwar AR=AP+AQ

Das ist allerdings nicht ganz einfach, wie ich gerade feststelle, denn es ist keineswegs einfach z.B. die Verbindung zwischen A und der Mitte von BC. Man müsste den Winkel [mm] \alpha [/mm] bestimmen und sich dann Folgendes überlegen. Der Winkel zwischen der gesuchten WInkelhalbierenden und AB oder AC muss [mm] \bruch{\alpha}{2} [/mm] betragen. AB und AC sind gegeben, der Winkel [mm] \alpha [/mm] kann ebenfalls bestimmt werden. Damit kann ein neues Skalarprodukt mit dem Unbekannten Richtungsvektor und entweder AB oder AC aufgestellt werden und du kannst den gesuchten RIchtungsvektor bestimmen. Yeah! ^^

Nachtrag: Du musst beide Gleichungen aufstellen, also sowohl
[mm] \overrightarrow{AB}*r_w [/mm] als auch [mm] \overrightarrow{AC}*r_w, [/mm] wobei [mm] r_w [/mm] der Richtungsvektor der WInkelhalbierenden ist. Denn du erhälst aufgrund der eiden unbekannten Komponenten x und y des Richtungsvektors [mm] r_w [/mm] ja zwei Unbekannte pro Gleichung!


Bezug
        
Bezug
Winkelhalbierende bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Do 19.05.2011
Autor: Al-Chwarizmi


> Halihalo,
>  
> es sind 3 Punkte gegeben:
>  
> [mm]A(1/2/3)[/mm]   [mm]B(1/5/7)[/mm]    [mm]C(1/2/5)[/mm]
>  
> Gesucht ist die Gleichung der Winkelhalbie-
> renden von [mm]\alpha[/mm]
>  
> Zunächst habe ich die Richtungsvektoren
> [mm]\overrightarrow{AB}[/mm] und [mm]\overrightarrow{AC}[/mm] bestimmt.
>  
> Für [mm]\overrightarrow{AB}[/mm] habe ich [mm]\vektor{0 \\ 3 \\4}[/mm] und
> für [mm]\overrightarrow{AC} \vektor{0 \\ 0 \\ 2}[/mm] raus.


Hallo Crashday,

mach dir klar, wie man die Winkelhalbierende
konstruieren würde:
Mit dem Zirkel zieht man einen Bogen mit
Zentrum A, welcher die beiden Schenkel des
Winkels in den Punkten P und Q schneidet.
Mittels zwei Bögen mit dem gleichen Radius
um die Punkte P und Q bestimmt man dann
den Punkt R so, dass die Figur APRQ ein
Parallelogramm, sogar ein Rhombus ist.
Dann ist AR die gesuchte Winkelhalbierende.
Rechnerisch kann man dies mittels Vektoren
gut nachvollziehen: Bestimme also zwei
Vektoren [mm] \overrightarrow{AP} [/mm] und [mm] \overrightarrow{AQ} [/mm] , welche zu [mm] \overrightarrow{AB} [/mm] bzw. [mm] \overrightarrow{AC} [/mm]
kollinear sind und dazu gleich lang, also
[mm] |\overrightarrow{AP}|=|\overrightarrow{AQ}| [/mm] .
Der Vektor [mm] \overrightarrow{AP}=\overrightarrow{AP}+\overrightarrow{AQ} [/mm] ist dann ein Richtungs-
vektor für die Winkelhalbierende.

LG    Al-Chw.


Bezug
                
Bezug
Winkelhalbierende bestimmen: elegante Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 19.05.2011
Autor: Adamantin


> > Halihalo,
>  >  
> > es sind 3 Punkte gegeben:
>  >  
> > [mm]A(1/2/3)[/mm]   [mm]B(1/5/7)[/mm]    [mm]C(1/2/5)[/mm]
>  >  
> > Gesucht ist die Gleichung der Winkelhalbie-
> > renden von [mm]\alpha[/mm]
>  >  
> > Zunächst habe ich die Richtungsvektoren
> > [mm]\overrightarrow{AB}[/mm] und [mm]\overrightarrow{AC}[/mm] bestimmt.
>  >  
> > Für [mm]\overrightarrow{AB}[/mm] habe ich [mm]\vektor{0 \\ 3 \\4}[/mm] und
> > für [mm]\overrightarrow{AC} \vektor{0 \\ 0 \\ 2}[/mm] raus.
>  
>
> Hallo Crashday,
>  
> mach dir klar, wie man die Winkelhalbierende
>  konstruieren würde:
>  Mit dem Zirkel zieht man einen Bogen mit
>  Zentrum A, welcher die beiden Schenkel des
> Winkels in den Punkten P und Q schneidet.
>  Mittels zwei Bögen mit dem gleichen Radius
>  um die Punkte P und Q bestimmt man dann
>  den Punkt R so, dass die Figur APRQ ein
>  Parallelogramm, sogar ein Rhombus ist.
>  Dann ist AR die gesuchte Winkelhalbierende.
>  Rechnerisch kann man dies mittels Vektoren
>  gut nachvollziehen: Bestimme also zwei
>  Vektoren [mm]\overrightarrow{AP}[/mm] und [mm]\overrightarrow{AQ}[/mm] ,
> welche zu [mm]\overrightarrow{AB}[/mm] bzw. [mm]\overrightarrow{AC}[/mm]
>  kollinear sind und dazu gleich lang, also
> [mm]|\overrightarrow{AP}|=|\overrightarrow{AQ}|[/mm] .
>  Der Vektor
> [mm]\overrightarrow{AP}=\overrightarrow{AP}+\overrightarrow{AP}[/mm]
> ist dann ein Richtungs-
>  vektor für die Winkelhalbierende.
>  
> LG    Al-Chw.
>  

Asche auf mein Haupt ich schäme mich, aber meine Lösung hat den größeren Übungseffekt ;) Kleiner Fehler, es muss heißen:
[mm]\overrightarrow{AR}=\overrightarrow{AP}+\overrightarrow{AQ}[/mm] . Aber sehr elegant. Man könnte natürlich auch noch Kreise mit ins Spiel bringen und so den SP berechnen, dann dürfte man noch mehr rechnen als bei mir :p


Bezug
                
Bezug
Winkelhalbierende bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Do 19.05.2011
Autor: Crashday


> > Halihalo,
>  >  
> > es sind 3 Punkte gegeben:
>  >  
> > [mm]A(1/2/3)[/mm]   [mm]B(1/5/7)[/mm]    [mm]C(1/2/5)[/mm]
>  >  
> > Gesucht ist die Gleichung der Winkelhalbie-
> > renden von [mm]\alpha[/mm]
>  >  
> > Zunächst habe ich die Richtungsvektoren
> > [mm]\overrightarrow{AB}[/mm] und [mm]\overrightarrow{AC}[/mm] bestimmt.
>  >  
> > Für [mm]\overrightarrow{AB}[/mm] habe ich [mm]\vektor{0 \\ 3 \\4}[/mm] und
> > für [mm]\overrightarrow{AC} \vektor{0 \\ 0 \\ 2}[/mm] raus.
>  
>
> Hallo Crashday,
>  
> mach dir klar, wie man die Winkelhalbierende
>  konstruieren würde:
>  Mit dem Zirkel zieht man einen Bogen mit
>  Zentrum A, welcher die beiden Schenkel des
> Winkels in den Punkten P und Q schneidet.
>  Mittels zwei Bögen mit dem gleichen Radius
>  um die Punkte P und Q bestimmt man dann
>  den Punkt R so, dass die Figur APRQ ein
>  Parallelogramm, sogar ein Rhombus ist.
>  Dann ist AR die gesuchte Winkelhalbierende.
>  

Bis dahin ist mir alles klar. Ich verstehe aber danach nicht, wie ich die Vektoren ausrechnen soll auch wenn du es hingeschrieben hast, wie ich es machen soll...

Bezug
                        
Bezug
Winkelhalbierende bestimmen: jetzt stimmts, sorry
Status: (Antwort) fertig Status 
Datum: 16:11 Do 19.05.2011
Autor: Adamantin

Meine Antwort war quatsch, natürlich musst du vorher AB und AC auf eine einheitliche Länge bringen! Wenn dann |AB| = |AC|, dann kannst du beide addieren und hast die gesuchte Diagonale, die die Winkelhalbierende ist.

Bezug
                        
Bezug
Winkelhalbierende bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Do 19.05.2011
Autor: Al-Chwarizmi


>  Bis dahin ist mir alles klar. Ich verstehe aber danach
> nicht, wie ich die Vektoren ausrechnen soll auch wenn du es
> hingeschrieben hast, wie ich es machen soll...

Es geht darum, dass du aus den beiden bekannten
Vektoren [mm] \overrightarrow{AB} [/mm] und  [mm] \overrightarrow{AC} [/mm] zwei neue Vektoren mit den
gleichen Richtungen produzierst, welche gleich lang
sind. Zu diesem Zweck kannst du z.B. aus beiden
Vektoren Einheitsvektoren machst, indem du jeden
durch seinen Betrag dividierst.
Rechnerisch ist aber oft folgender Weg angenehmer:
Multipliziere jeden der beiden Vektoren mit dem
Betrag des anderen. Also: wenn man einen Vektor [mm] \vec{w} [/mm]
mit der Richtung der Winkelhalbierenden von [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm]
sucht, so setze man [mm] \vec{w}:=|\vec{v}|*\vec{u}+|\vec{u}|*\vec{v} [/mm]

LG   Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]