matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Informatik AlgorithmenWinkelberechnungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Informatik Algorithmen" - Winkelberechnungen
Winkelberechnungen < Algorithmen < Schule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Informatik Algorithmen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelberechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 Fr 05.01.2007
Autor: kons

Hi,
ich bin nicht mehr in der schule und weiss daher auch nicht genau in welches themenfeld meine frage gehört: Aber ich stelle Sie einfach mal da ich sonst keine verständlichen ansätze gefunden habe.
ich habe an sich eine Strecke im 3d raum und einen weiteren punkt in diesem. ich suche nun den winkel der die Strecke und die Strecke durch den mittelpunkt dieser und durch den punkt einschliesst. dabei suche ich eine lösung die programmierbar (Actionscript) ist ohne viele if-abfragen (es gibt wohl eine lösung mit modulo??). weiterhin suche ich die entfernung des mittelpunkts von dem freistehenden punkt. ich hoffe auf anregungen/Links und vielleicht eine kurze erklärung. vielen dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Winkelberechnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Fr 05.01.2007
Autor: kretschmer

Hallo,

also die euklidische Entfernung $d(x,y)$ (euklidische Distanz == die "normale") zwischen den Punkten [mm] $x=(x_1,x_2,x_3)$ [/mm] und [mm] $y=(y_1,y_2,y_3)$ [/mm] ist einfach [mm] $d(x,y)=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2}$. [/mm] Damit wäre deine zweite Frage wohl beantwortet.

Zur ersten Frage: dem Winkel. Also Du hast zwei Punkte $a,b$, die dir die Strecke definieren, dann wäre wohl $m=(a+b)/2$ der Mittelpunkt. Und nun willst Du den Winkel zwischen der Strecke [mm] $\overline{ab}$ [/mm] und der Strecke [mm] $\overline{mc}$ [/mm] für einen weiteren Punkt $c$. Ich hoffe ich habe Dich da richtig verstanden.  Da kommt bei mir die Frage auf, welchen Winkel du haben möchtest? Wenn Du Dir das aufzeichnest, wirst Du ja feststellen können, dass  es mehrere mögliche Winkel geben wird.  Diese unterscheiden sich um genau [mm] $180^\circ$. [/mm]  Auf jedenfall kannst Du dann den "minimalen" einfach per [mm] $\mod 180^\circ$ [/mm] berechnen.  Jetzt musst Du nurnoch einmal auf den Winkel kommen.  Dazu bilden wir einfach den Winkel zwischen [mm] $\overline{mb}$ [/mm] und [mm] $\overline{mc}$. [/mm]  Das geht recht gut mit dem Cosinus-Satz.  Sei [mm] $x=|\overline{mb}|$ [/mm] die Länge der Strecke [mm] $\overline{mb}$, $y=|\overline{mc}|$ [/mm] die Länge der Strecke [mm] $\overline{mc}$, $z=|\overline{bc}|$ [/mm] die Länge der Strecke [mm] $\overline{bc}$ [/mm] und [mm] $\alpha$ [/mm] der Winkel zwischen [mm] $\overline{mb}$ [/mm] und [mm] $\overline{mc}$. [/mm] Dann gilt [mm] $z^2=x^2+y^2-2xy\cos\alpha$ [/mm] Das kann man dann natürlich entsprechend zu [mm] $\cos\alpha=(x^2+y^2-z^2)/2xy$ [/mm] umformen, bzw. [mm] $\alpha=\arccos((x^2+y^2-z^2)/2xy)$. [/mm]

Gruß
Matthias Kretschmer

Bezug
                
Bezug
Winkelberechnungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Fr 05.01.2007
Autor: kons

Wow, vielen dank.
gruss
kons

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Informatik Algorithmen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]