Winkelamplituden < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:27 Mo 26.06.2006 | Autor: | G3kkoo |
Aufgabe | Berechnen Sie nach tan Φ [mm] \approx [/mm] Φ = [mm] \bruch{S}{r} [/mm] aus den Werten [mm] S_{1} [/mm] und [mm] S_{2} [/mm] die Winkelamplituden Φ1 und Φ2. Zunächst in Bogenmaß, für die Angabe im Protokoll im Winkelmaß mit Fehlerangabe. |
geg: [mm] S_{1}= [/mm] 2cm; [mm] S_{2}= [/mm] 9,5cm; r=124cm
Φ1= [mm] \bruch{S_{1}}{r}=0,016
[/mm]
Φ2= [mm] \bruch{S_{2}}{r}=0,077
[/mm]
Irgendwie finde ich die zahlen für einen Winkel recht klein, dh ist mir nicht wirklich klar wie man das richtig berechnet.
Als Fehlerangabe habe ich jeweils nach [mm] S_{1}/r [/mm] und [mm] S_{2}/r [/mm] partiell differenziert. Aber ich bezweifel ebenfalls, das das hier notwendig bzw korrekt ist:
[mm] \bruch{\delta Phi 1}{\delta Phi S1}=r*u_{S1}=124cm*0,3cm=37,2cm
[/mm]
[mm] \bruch{\delta Phi 1}{\delta Phi r}= \bruch{r-S_{1}*r}{r^2}*u_{r}=\bruch{124cm-2cm*124cm}{124cm^2}*1cm=-8,06*10^-3
[/mm]
[mm] u_{Phi 1}=|37,2cm|+|-8,06*10^-3|=37,2cm
[/mm]
[mm] \bruch{\delta Phi 2}{\delta Phi S2}=r*u_{S2}=124cm*0,5cm=62cm
[/mm]
[mm] \bruch{\delta Phi2}{\delta Phi r}= \bruch{r-S_{2}*r}{r^2}*u_{r}=\bruch{124cm-9,5cm*124cm}{124cm^2}*1cm=-0,07cm
[/mm]
[mm] u_{Phi 2}=|62cm|+|-0,07|=61,9cm
[/mm]
Was sagt ihr?
Vielen Dank im Voraus!
Sarah
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:32 Di 27.06.2006 | Autor: | leduart |
Hallo G3
> Berechnen Sie nach tan Φ [mm]\approx[/mm] Φ =
> [mm]\bruch{S}{r}[/mm] aus den Werten [mm]S_{1}[/mm] und [mm]S_{2}[/mm] die
> Winkelamplituden Φ1 und Φ2. Zunächst in Bogenmaß,
> für die Angabe im Protokoll im Winkelmaß mit Fehlerangabe.
> geg: [mm]S_{1}=[/mm] 2cm; [mm]S_{2}=[/mm] 9,5cm; r=124cm
Woher hast du die Fehler für S1 und S2 und r?
> Φ1= [mm]\bruch{S_{1}}{r}=0,016[/mm]
> Φ2= [mm]\bruch{S_{2}}{r}=0,077[/mm]
Das sind doch die Winkel im Bogenmaß! der rste ist fast 1° der zweite mehr als 4° und der Radius ist ja groß!
> Irgendwie finde ich die zahlen für einen Winkel recht
> klein, dh ist mir nicht wirklich klar wie man das richtig
> berechnet.
Winkel im [mm] Bogenmaß*180/\pi= [/mm] Winkel im Winkelmaß!
> Als Fehlerangabe habe ich jeweils nach [mm]S_{1}/r[/mm] und [mm]S_{2}/r[/mm]
> partiell differenziert. Aber ich bezweifel ebenfalls, das
> das hier notwendig bzw korrekt ist:
ich versteh nicht nach was du differenziert hast, und es kommt drauf an, welche Größen Fehler haben. falls nur s1 und s2, dann bleibt der relative Fehler bei einer Umrechnung erhalten, sonst addieren sie sich beim multiplizieren und dividieren
> [mm]\bruch{\delta \Phi 1}{\delta \Phi S1}=r*u_{S1}=124cm*0,3cm=37,2cm[/mm]
Was ist hier u? und was PhiS1?
> [mm]\bruch{\delta Phi 1}{\delta Phi r}= \bruch{r-S_{1}*r}{r^2}*u_{r}=\bruch{124cm-2cm*124cm}{124cm^2}*1cm=-8,06*10^-3[/mm]
>
> [mm]u_{Phi 1}=|37,2cm|+|-8,06*10^-3|=37,2cm[/mm]
>
>
> [mm]\bruch{\delta Phi 2}{\delta Phi S2}=r*u_{S2}=124cm*0,5cm=62cm[/mm]
>
> [mm]\bruch{\delta Phi2}{\delta Phi r}= \bruch{r-S_{2}*r}{r^2}*u_{r}=\bruch{124cm-9,5cm*124cm}{124cm^2}*1cm=-0,07cm[/mm]
Ich versteh nicht, was du gemacht hast, aber ein Ausdruck, in dem a cm [mm] -bcm^{2} [/mm] steht ist immer sinnlos und damit falsch!
> [mm]u_{Phi 2}=|62cm|+|-0,07|=61,9cm[/mm]
>
>
> Was sagt ihr?
Dass ich das leider nicht verstehe, insbesondere weil mir Angaben fehlen.
Aber egal, wie man Fehler ausrechnet, man kann sie nicht als exakte Größen zum Meßwert addieren.
(Habt ihr nicht eine Anleitung zur Fehlerrechnung bei eurem Praktikum?)
Gruss leduart
|
|
|
|