matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungWinkel durch Differenzierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Winkel durch Differenzierung
Winkel durch Differenzierung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel durch Differenzierung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:57 So 14.06.2009
Autor: babapapa

Aufgabe
Berechne die Winkel zwischen den Koordinatenachsen und der Normalen an die Fläche
[mm] x^2 [/mm] + [mm] y^2 [/mm] - xz - yz = 0
an der Stelle x = 0, y = 2!

Hallo!

Die Aufgabe ist etwas verzwickt finde ich.

Die Tangenten bei konstantem x und y bekomme ich ja wieder durch ableitung aber ich komme damit nicht viel weiter.
muss ich hier wieder implizit differenzieren?

wenn ich beide tangenten habe muss ich wohl das kreuzprodukt bilden damit ich den normalvektor bekomme, aber wie geht das hier?

bitte um hilfe - ich sehe bei diesem beispiel leider nicht viel möglichkeiten alleine weiter zu kommen

lg


PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Winkel durch Differenzierung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 So 14.06.2009
Autor: Al-Chwarizmi


> Berechne die Winkel zwischen den Koordinatenachsen und der
> Normalen an die Fläche
>  [mm]x^2[/mm] + [mm]y^2[/mm] - xz - yz = 0
>  an der Stelle x = 0, y = 2!
>  Hallo!
>  
> Die Aufgabe ist etwas verzwickt finde ich.
>  
> Die Tangenten bei konstantem x und y bekomme ich ja wieder
> durch ableitung aber ich komme damit nicht viel weiter.
>  muss ich hier wieder implizit differenzieren?
>  
> wenn ich beide tangenten habe muss ich wohl das
> kreuzprodukt bilden damit ich den normalvektor bekomme,
> aber wie geht das hier?



Man kann die Flächengleichung leicht auf die Form  z=f(x,y)
bringen. Einen Normalenvektor zur Fläche kannst du
wirklich mit dem Kreuzprodukt aus zwei Tangentialvektoren
berechnen. Dabei ist ein erster möglicher Tangentialvektor
z.B.

        [mm] \vec{t}_1=\vektor{1\\0\\\bruch{\partial{z}}{\partial{x}}} [/mm]


Eine andere (einfachere) Methode wäre die, den Normalen-
vektor der Fläche mit der Gleichung der Form F(x,y,z)=const
als Gradientenvektor der Funktion F(x,y,z) im betrachteten
Punkt der Fläche zu betrachten.


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]