matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenWinkel: Normale - Fläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Winkel: Normale - Fläche
Winkel: Normale - Fläche < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel: Normale - Fläche: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:06 Sa 28.11.2009
Autor: babapapa

Aufgabe
Berechne die Winkel zwischen den Koordinatenachsen und der Normalen an die Fläche [mm] x^2 [/mm] + [mm] y^2 [/mm] - xz - yz = 0 an der Stelle x = 0, y = 2!

Hallo!


Nun die Fläche ist implizit durch die Gleichung g (x,y,z) = 0 gegeben. Die Funktion ist auch differenzierbart =>

Gradient ist der Normalvektor (nicht normiert)

[mm] \nabla [/mm] g(x,y,z) = [mm] \vektor{\bruch{\partial g}{\partial x} \\ \bruch{\partial g}{\partial y} \\ \bruch{\partial g}{\partial z}} [/mm] = [mm] \vektor{2x - z \\ 2y - z \\ -x - y} [/mm]

Nun muss ich die Stelle x=0, y = 2 mit einbeziehen -> z kommt im 3ten Term nicht vor - wenn doch müsste ich z = 0 annehmen? (FRAGE)

meine funktion ist ja [mm] \IR^3 [/mm] -> [mm] \IR [/mm] ([]WIKIPEDIA)...

oder muss ich hier wie nach wiki vorgehen:
[mm] \nabla [/mm] f(x,y) = [mm] \vektor{- \bruch{\partial g}{\partial x} \\ - \bruch{\partial g}{\partial y} \\ 1} [/mm] = [mm] \vektor{2x - z \\ 2y - z \\ 1} [/mm]
=>
[mm] \nabla [/mm] f(0,2) = [mm] \vektor{2 * 0 - 1 \\ 2 * 2 - 1 \\ 1} [/mm] = [mm] \vektor{-1 \\ 3 \\ 1} [/mm]



Der Winkel zwischen den Vektoren sollte dann ein Kinderspiel sein:

[mm] cos(\alpha) [/mm] = [mm] \bruch{a * b}{|a| * |b|} [/mm]
wobei a = {{1,0,0},{0,1,0},{0,0,1}} - Koordinatenachsen
und b der Gradient ist.


Dankeschön!

lg
Babapapa


        
Bezug
Winkel: Normale - Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Sa 28.11.2009
Autor: MathePower

Hallo babapapa,


> Berechne die Winkel zwischen den Koordinatenachsen und der
> Normalen an die Fläche [mm]x^2[/mm] + [mm]y^2[/mm] - xz - yz = 0 an der
> Stelle x = 0, y = 2!
>  Hallo!
>  
>
> Nun die Fläche ist implizit durch die Gleichung g (x,y,z)
> = 0 gegeben. Die Funktion ist auch differenzierbart =>
>  
> Gradient ist der Normalvektor (nicht normiert)
>  
> [mm]\nabla[/mm] g(x,y,z) = [mm]\vektor{\bruch{\partial g}{\partial x} \\ \bruch{\partial g}{\partial y} \\ \bruch{\partial g}{\partial z}}[/mm]
> = [mm]\vektor{2x - z \\ 2y - z \\ -x - y}[/mm]
>  
> Nun muss ich die Stelle x=0, y = 2 mit einbeziehen -> z
> kommt im 3ten Term nicht vor - wenn doch müsste ich z = 0
> annehmen? (FRAGE)


Den Wert von z ermittelst Du aus der Gleichung der Fläche.


>  
> meine funktion ist ja [mm]\IR^3[/mm] -> [mm]\IR[/mm]
> ([]WIKIPEDIA)...
>  
> oder muss ich hier wie nach wiki vorgehen:
>  [mm]\nabla[/mm] f(x,y) = [mm]\vektor{- \bruch{\partial g}{\partial x} \\ - \bruch{\partial g}{\partial y} \\ 1}[/mm]
> = [mm]\vektor{2x - z \\ 2y - z \\ 1}[/mm]
>  =>

> [mm]\nabla[/mm] f(0,2) = [mm]\vektor{2 * 0 - 1 \\ 2 * 2 - 1 \\ 1}[/mm] =
> [mm]\vektor{-1 \\ 3 \\ 1}[/mm]
>  


Nachdem Du den Wert von z ermittelt hast,
setzt Du die entsprechenden Werte in den Gradienten ein.


>
>
> Der Winkel zwischen den Vektoren sollte dann ein
> Kinderspiel sein:
>  
> [mm]cos(\alpha)[/mm] = [mm]\bruch{a * b}{|a| * |b|}[/mm]
>  wobei a =
> {{1,0,0},{0,1,0},{0,0,1}} - Koordinatenachsen
>  und b der Gradient ist.
>  
>
> Dankeschön!
>  
> lg
>  Babapapa

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]