matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenWinkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Winkel
Winkel < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Do 13.08.2009
Autor: Dinker

f(x) = [mm] ae^{bx} [/mm]

Wie sind a und b zu wählen, damit der Graph die Gerade x = 3 unter einem Winkel von 30° schneidet und der Schnittwinkel mit der Gerade y = 3 zugleich 45° beträgt.

Mein Problem ist bei der Bedingung: Schneiden unter 30°.
Könnte da mein gesuchter Graph dort nicht die Steigung [mm] \wurzel{3} [/mm] oder [mm] \wurzel{\bruch{1}{3}} [/mm] haben?

Korrektur:
[mm] \wurzel{\bruch{1}{3}} [/mm] oder - [mm] \wurzel{\bruch{1}{3}}? [/mm]
Gruss Dinker

Danke
Gruss Dinker

        
Bezug
Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Do 13.08.2009
Autor: leduart

Hallo
1. wenn er x=3 unter [mm] 30^o [/mm] schneidet, dann hat er die Steigung [mm] \pm \wurzel{3} [/mm]  weil [mm] 60^o [/mm] zur x-Achse.
2. im Prinzip hast du recht, genau wie bei den [mm] 45^o [/mm] auch da Steigung [mm] \pm [/mm] 1 erfuellt die Bedingung.
Wenn du dir mal die Kurven allgemein skizzierst mit den 4 moeglichen Vorzeichen von a und b siehst du, dass a<0 nicht in Frage kommt, weil es y=3 nicht schneidet. bleibt noch b>0 oder b<0, beide sind monoton, also eine hat beide neg. Werte, die andere beide pos. Werte.
Gruss leduart

Bezug
                
Bezug
Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:29 Fr 14.08.2009
Autor: Dinker

Guten Morgen

Das mit den [mm] \wurzel{3} [/mm] verstehe ich überhaupt nicht.
Denn diese Gerade ist ziemlich "*flach" und bestimmt nicht über 1.
Ich sehe es nicht, bitte helft mir

Danke
Gruss Dinker

Bezug
                        
Bezug
Winkel: Skizze
Status: (Antwort) fertig Status 
Datum: 10:00 Fr 14.08.2009
Autor: Loddar

Hallo Dinker!


Mache Dir - wie von leduart geraten -  eine Skizze. Der genannte Winkel von 30° ist der Winkel der vertikalen(!) Geraden $x \ = \ 3$ zur Kurve. Damit beträgt der Steigungswinkel zur Horizontalen [mm] $\alpha' [/mm] \ = \ [mm] 90^o-30^o [/mm] \ = \ [mm] 60^o$ [/mm] .

Und es gilt: [mm] $\tan 60^o [/mm] \ = \ [mm] \wurzel{3} [/mm] \ [mm] \approx [/mm] \ 1{,}732$ .


Gruß
Loddar


Bezug
                                
Bezug
Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Fr 14.08.2009
Autor: Dinker

Guten Morgen

Dake für die Antwort.
Ich versteh das einfach nicht. x = 3 ist ja eine Horizontale Gerade. Dann ist doch der Winkel 30° zur Horizontalen?

Danke
gruss DInker

Bezug
                                        
Bezug
Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Fr 14.08.2009
Autor: angela.h.b.


>  Ich versteh das einfach nicht. x = 3 ist ja eine
> Horizontale Gerade.

Hallo,

nein, es ist eine vertikale Gerade.

Schau: auf x=3 liegen all die Punkte, deren x-Koordinate =3 ist.

Gruß v. Angela

Bezug
                                                
Bezug
Winkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 Fr 14.08.2009
Autor: Dinker

Hallo Angela

Vielen Dank, dann ist es um einiges klarer

Gruss Dinker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]